SHAPES.C

/* 
* (c) Copyright 1993, Silicon Graphics, Inc.
* ALL RIGHTS RESERVED
* Permission to use, copy, modify, and distribute this software for
* any purpose and without fee is hereby granted, provided that the above
* copyright notice appear in all copies and that both the copyright notice
* and this permission notice appear in supporting documentation, and that
* the name of Silicon Graphics, Inc. not be used in advertising
* or publicity pertaining to distribution of the software without specific,
* written prior permission.
*
* THE MATERIAL EMBODIED ON THIS SOFTWARE IS PROVIDED TO YOU "AS-IS"
* AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR
* FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SILICON
* GRAPHICS, INC. BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DIRECT,
* SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY
* KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING WITHOUT LIMITATION,
* LOSS OF PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF
* THIRD PARTIES, WHETHER OR NOT SILICON GRAPHICS, INC. HAS BEEN
* ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE
* POSSESSION, USE OR PERFORMANCE OF THIS SOFTWARE.
*
* US Government Users Restricted Rights
* Use, duplication, or disclosure by the Government is subject to
* restrictions set forth in FAR 52.227.19(c)(2) or subparagraph
* (c)(1)(ii) of the Rights in Technical Data and Computer Software
* clause at DFARS 252.227-7013 and/or in similar or successor
* clauses in the FAR or the DOD or NASA FAR Supplement.
* Unpublished-- rights reserved under the copyright laws of the
* United States. Contractor/manufacturer is Silicon Graphics,
* Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311.
*
* OpenGL(TM) is a trademark of Silicon Graphics, Inc.
*/
#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <GL/gl.h>
#include <GL/glu.h>
#include <gl/glaux.h>
#include "3d.h"

#define static

#define SPHEREWIRE 0
#define CUBEWIRE 1
#define BOXWIRE 2
#define TORUSWIRE 3
#define CYLINDERWIRE 4
#define ICOSAWIRE 5
#define OCTAWIRE 6
#define TETRAWIRE 7
#define DODECAWIRE 8
#define CONEWIRE 9
#define SPHERESOLID 10
#define CUBESOLID 11
#define BOXSOLID 12
#define TORUSSOLID 13
#define CYLINDERSOLID 14
#define ICOSASOLID 15
#define OCTASOLID 16
#define TETRASOLID 17
#define DODECASOLID 18
#define CONESOLID 19

#define PI ((GLdouble)3.1415926535897)

/* structure for each geometric object */
typedef struct model {
GLuint list; /* display list to render object */
struct model *ptr; /* pointer to next object */
int numParam; /* # of parameters */
GLdouble *params; /* array with parameters */
} MODEL, *MODELPTR;

/* array of linked lists--used to keep track of display lists
* for each different type of geometric object.
*/
static MODELPTR lists[25] = {
NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL
};

GLuint findList (int index, GLdouble *paramArray, int size);
int compareParams (GLdouble *oneArray, GLdouble *twoArray, int size);
GLuint makeModelPtr (int index, GLdouble *sizeArray, int count);

static void drawbox(GLdouble, GLdouble, GLdouble,
GLdouble, GLdouble, GLdouble, GLenum);
static void doughnut(GLdouble, GLdouble, GLint, GLint, GLenum);
static void icosahedron(GLdouble *, GLdouble, GLenum);
static void octahedron(GLdouble *, GLdouble, GLenum);
static void tetrahedron(GLdouble *, GLdouble, GLenum);
static void subdivide(int, GLdouble *, GLdouble *, GLdouble *,
GLdouble *, GLdouble, GLenum, int);
static void drawtriangle(int, int, int,
GLdouble *, GLdouble, GLenum, int);
static void recorditem(GLdouble *, GLdouble *, GLdouble *,
GLdouble *, GLdouble, GLenum, int);
static void initdodec(void);
static void dodecahedron(GLdouble *, GLdouble, GLenum);
static void pentagon(int, int, int, int, int, GLenum);


/* Render wire frame or solid sphere. If no display list with
* the current model size exists, create a new display list.
*/
void auxWireSphere (GLdouble radius)
{
GLUquadricObj *quadObj;
GLdouble *sizeArray;
GLuint displayList;

sizeArray = (GLdouble *) malloc (sizeof (GLdouble) * 1);
*sizeArray = radius;
displayList = findList (SPHEREWIRE, sizeArray, 1);

if (displayList == 0) {
glNewList(makeModelPtr (SPHEREWIRE, sizeArray, 1),
GL_COMPILE_AND_EXECUTE);
quadObj = gluNewQuadric ();
gluQuadricDrawStyle (quadObj, GLU_LINE);
gluSphere (quadObj, radius, 16, 16);
glEndList();
}
else {
glCallList(displayList);
free (sizeArray);
}
}

void auxSolidSphere (GLdouble radius)
{
GLUquadricObj *quadObj;
GLdouble *sizeArray;
GLuint displayList;

sizeArray = (GLdouble *) malloc (sizeof (GLdouble) * 1);
*sizeArray = radius;
displayList = findList (SPHERESOLID, sizeArray, 1);

if (displayList == 0) {
glNewList(makeModelPtr (SPHERESOLID, sizeArray, 1),
GL_COMPILE_AND_EXECUTE);
quadObj = gluNewQuadric ();
gluQuadricDrawStyle (quadObj, GLU_FILL);
gluQuadricNormals (quadObj, GLU_SMOOTH);
gluSphere (quadObj, radius, 16, 16);
glEndList();
}
else {
glCallList(displayList);
free (sizeArray);
}
}

/* Render wire frame or solid cube. If no display list with
* the current model size exists, create a new display list.
*/
void auxWireCube (GLdouble size)
{
GLdouble *sizeArray;
GLuint displayList;

sizeArray = (GLdouble *) malloc (sizeof (GLdouble) * 1);
*sizeArray = size;
displayList = findList (CUBEWIRE, sizeArray, 1);

if (displayList == 0) {
glNewList(makeModelPtr (CUBEWIRE, sizeArray, 1),
GL_COMPILE_AND_EXECUTE);
drawbox(-size/(GLdouble)2., size/(GLdouble)2., -size/(GLdouble)2., size/(GLdouble)2.,
-size/(GLdouble)2., size/(GLdouble)2., GL_LINE_LOOP);
glEndList();
}
else {
glCallList(displayList);
free (sizeArray);
}
}

void auxSolidCube (GLdouble size)
{
GLdouble *sizeArray;
GLuint displayList;

sizeArray = (GLdouble *) malloc (sizeof (GLdouble) * 1);
*sizeArray = size;
displayList = findList (CUBESOLID, sizeArray, 1);

if (displayList == 0) {
glNewList(makeModelPtr (CUBESOLID, sizeArray, 1),
GL_COMPILE_AND_EXECUTE);
drawbox(-size/(GLdouble)2., size/(GLdouble)2., -size/(GLdouble)2., size/(GLdouble)2.,
-size/(GLdouble)2., size/(GLdouble)2., GL_QUADS);
glEndList();
}
else {
glCallList(displayList);
free (sizeArray);
}
}

/* Render wire frame or solid cube. If no display list with
* the current model size exists, create a new display list.
*/
void auxWireBox (GLdouble width, GLdouble height, GLdouble depth)
{
GLdouble *sizeArray, *tmp;
GLuint displayList;

sizeArray = (GLdouble *) malloc (sizeof (GLdouble) * 3);
tmp = sizeArray;
*tmp++ = width;
*tmp++ = height;
*tmp++ = depth;
displayList = findList (BOXWIRE, sizeArray, 3);

if (displayList == 0) {
glNewList(makeModelPtr (BOXWIRE, sizeArray, 3),
GL_COMPILE_AND_EXECUTE);
drawbox(-width/(GLdouble)2., width/(GLdouble)2., -height/(GLdouble)2., height/(GLdouble)2.,
-depth/(GLdouble)2., depth/(GLdouble)2., GL_LINE_LOOP);
glEndList();
}
else {
glCallList(displayList);
free (sizeArray);
}
}

void auxSolidBox (GLdouble width, GLdouble height, GLdouble depth)
{
GLdouble *sizeArray, *tmp;
GLuint displayList;

sizeArray = (GLdouble *) malloc (sizeof (GLdouble) * 3);
tmp = sizeArray;
*tmp++ = width;
*tmp++ = height;
*tmp++ = depth;
displayList = findList (BOXSOLID, sizeArray, 3);

if (displayList == 0) {
glNewList(makeModelPtr (BOXSOLID, sizeArray, 3),
GL_COMPILE_AND_EXECUTE);
drawbox(-width/(GLdouble)2., width/(GLdouble)2., -height/(GLdouble)2., height/(GLdouble)2.,
-depth/(GLdouble)2., depth/(GLdouble)2., GL_QUADS);
glEndList();
}
else {
glCallList(displayList);
free (sizeArray);
}
}

/* Render wire frame or solid tori. If no display list with
* the current model size exists, create a new display list.
*/
void auxWireTorus (GLdouble innerRadius, GLdouble outerRadius)
{
GLdouble *sizeArray, *tmp;
GLuint displayList;

sizeArray = (GLdouble *) malloc (sizeof (GLdouble) * 2);
tmp = sizeArray;
*tmp++ = innerRadius;
*tmp++ = outerRadius;
displayList = findList (TORUSWIRE, sizeArray, 2);

if (displayList == 0) {
glNewList(makeModelPtr (TORUSWIRE, sizeArray, 2),
GL_COMPILE_AND_EXECUTE);
doughnut(innerRadius, outerRadius, 5, 10, GL_LINE_LOOP);
glEndList();
}
else {
glCallList(displayList);
free (sizeArray);
}
}

void auxSolidTorus (GLdouble innerRadius, GLdouble outerRadius)
{
GLdouble *sizeArray, *tmp;
GLuint displayList;

sizeArray = (GLdouble *) malloc (sizeof (GLdouble) * 2);
tmp = sizeArray;
*tmp++ = innerRadius;
*tmp++ = outerRadius;
displayList = findList (TORUSSOLID, sizeArray, 2);

if (displayList == 0) {
glNewList(makeModelPtr (TORUSSOLID, sizeArray, 2),
GL_COMPILE_AND_EXECUTE);
doughnut(innerRadius, outerRadius, 8, 15, GL_QUADS);
glEndList();
}
else {
glCallList(displayList);
free (sizeArray);
}
}

/* Render wire frame or solid cylinders. If no display list with
* the current model size exists, create a new display list.
*/
void auxWireCylinder (GLdouble radius, GLdouble height)
{
GLUquadricObj *quadObj;
GLdouble *sizeArray, *tmp;
GLuint displayList;

sizeArray = (GLdouble *) malloc (sizeof (GLdouble) * 2);
tmp = sizeArray;
*tmp++ = radius;
*tmp++ = height;
displayList = findList (CYLINDERWIRE, sizeArray, 2);

if (displayList == 0) {
glNewList(makeModelPtr (CYLINDERWIRE, sizeArray, 2),
GL_COMPILE_AND_EXECUTE);
glPushMatrix ();
glRotatef ((GLfloat)90.0, (GLfloat)1.0, (GLfloat)0.0, (GLfloat)0.0);
glTranslatef ((GLfloat)0.0, (GLfloat)0.0, (GLfloat)-1.0);
quadObj = gluNewQuadric ();
gluQuadricDrawStyle (quadObj, GLU_LINE);
gluCylinder (quadObj, radius, radius, height, 12, 2);
glPopMatrix ();
glEndList();
}
else {
glCallList(displayList);
free (sizeArray);
}
}

void auxSolidCylinder (GLdouble radius, GLdouble height)
{
GLUquadricObj *quadObj;
GLdouble *sizeArray, *tmp;
GLuint displayList;

sizeArray = (GLdouble *) malloc (sizeof (GLdouble) * 2);
tmp = sizeArray;
*tmp++ = radius;
*tmp++ = height;
displayList = findList (CYLINDERWIRE, sizeArray, 2);

if (displayList == 0) {
glNewList(makeModelPtr (CYLINDERWIRE, sizeArray, 2),
GL_COMPILE_AND_EXECUTE);
glPushMatrix ();
glRotatef ((GLfloat)90.0, (GLfloat)1.0, (GLfloat)0.0, (GLfloat)0.0);
glTranslatef ((GLfloat)0.0, (GLfloat)0.0, (GLfloat)-1.0);
quadObj = gluNewQuadric ();
gluQuadricDrawStyle (quadObj, GLU_FILL);
gluQuadricNormals (quadObj, GLU_SMOOTH);
gluCylinder (quadObj, radius, radius, height, 12, 2);
glPopMatrix ();
glEndList();
}
else {
glCallList(displayList);
free (sizeArray);
}
}

/* Render wire frame or solid icosahedra. If no display list with
* the current model size exists, create a new display list.
*/
void auxWireIcosahedron (GLdouble radius)
{
GLdouble *sizeArray;
GLuint displayList;
GLdouble center[3] = {(GLdouble)0.0, (GLdouble)0.0, (GLdouble)0.0};

sizeArray = (GLdouble *) malloc (sizeof (GLdouble) * 1);
*sizeArray = radius;
displayList = findList (ICOSAWIRE, sizeArray, 1);

if (displayList == 0) {
glNewList(makeModelPtr (ICOSAWIRE, sizeArray, 1),
GL_COMPILE_AND_EXECUTE);
icosahedron (center, radius, GL_LINE_LOOP);
glEndList();
}
else {
glCallList(displayList);
free (sizeArray);
}
}

void auxSolidIcosahedron (GLdouble radius)
{
GLdouble *sizeArray;
GLuint displayList;
GLdouble center[3] = {(GLdouble)0.0, (GLdouble)0.0, (GLdouble)0.0};

sizeArray = (GLdouble *) malloc (sizeof (GLdouble) * 1);
*sizeArray = radius;
displayList = findList (ICOSASOLID, sizeArray, 1);

if (displayList == 0) {
glNewList(makeModelPtr (ICOSASOLID, sizeArray, 1),
GL_COMPILE_AND_EXECUTE);
icosahedron (center, radius, GL_TRIANGLES);
glEndList();
}
else {
glCallList(displayList);
free (sizeArray);
}
}

/* Render wire frame or solid octahedra. If no display list with
* the current model size exists, create a new display list.
*/
void auxWireOctahedron (GLdouble radius)
{
GLdouble *sizeArray;
GLuint displayList;
GLdouble center[3] = {(GLdouble)0.0, (GLdouble)0.0, (GLdouble)0.0};

sizeArray = (GLdouble *) malloc (sizeof (GLdouble) * 1);
*sizeArray = radius;
displayList = findList (OCTAWIRE, sizeArray, 1);

if (displayList == 0) {
glNewList(makeModelPtr (OCTAWIRE, sizeArray, 1),
GL_COMPILE_AND_EXECUTE);
octahedron (center, radius, GL_LINE_LOOP);
glEndList();
}
else {
glCallList(displayList);
free (sizeArray);
}
}

void auxSolidOctahedron (GLdouble radius)
{
GLdouble *sizeArray;
GLuint displayList;
GLdouble center[3] = {(GLdouble)0.0, (GLdouble)0.0, (GLdouble)0.0};

sizeArray = (GLdouble *) malloc (sizeof (GLdouble) * 1);
*sizeArray = radius;
displayList = findList (OCTASOLID, sizeArray, 1);

if (displayList == 0) {
glNewList(makeModelPtr (OCTASOLID, sizeArray, 1),
GL_COMPILE_AND_EXECUTE);
octahedron (center, radius, GL_TRIANGLES);
glEndList();
}
else {
glCallList(displayList);
free (sizeArray);
}
}

/* Render wire frame or solid tetrahedra. If no display list with
* the current model size exists, create a new display list.
*/
void auxWireTetrahedron (GLdouble radius)
{
GLdouble *sizeArray;
GLuint displayList;
GLdouble center[3] = {(GLdouble)0.0, (GLdouble)0.0, (GLdouble)0.0};

sizeArray = (GLdouble *) malloc (sizeof (GLdouble) * 1);
*sizeArray = radius;
displayList = findList (TETRAWIRE, sizeArray, 1);

if (displayList == 0) {
glNewList(makeModelPtr (TETRAWIRE, sizeArray, 1),
GL_COMPILE_AND_EXECUTE);
tetrahedron (center, radius, GL_LINE_LOOP);
glEndList();
}
else {
glCallList(displayList);
free (sizeArray);
}
}

void auxSolidTetrahedron (GLdouble radius)
{
GLdouble *sizeArray;
GLuint displayList;
GLdouble center[3] = {(GLdouble)0.0, (GLdouble)0.0, (GLdouble)0.0};

sizeArray = (GLdouble *) malloc (sizeof (GLdouble) * 1);
*sizeArray = radius;
displayList = findList (TETRASOLID, sizeArray, 1);

if (displayList == 0) {
glNewList(makeModelPtr (TETRASOLID, sizeArray, 1),
GL_COMPILE_AND_EXECUTE);
tetrahedron (center, radius, GL_TRIANGLES);
glEndList();
}
else {
glCallList(displayList);
free (sizeArray);
}
}

/* Render wire frame or solid dodecahedra. If no display list with
* the current model size exists, create a new display list.
*/
void auxWireDodecahedron (GLdouble radius)
{
GLdouble *sizeArray;
GLuint displayList;
GLdouble center[3] = {(GLdouble)0.0, (GLdouble)0.0, (GLdouble)0.0};

sizeArray = (GLdouble *) malloc (sizeof (GLdouble) * 1);
*sizeArray = radius;
displayList = findList (DODECAWIRE, sizeArray, 1);

if (displayList == 0) {
glNewList(makeModelPtr (DODECAWIRE, sizeArray, 1),
GL_COMPILE_AND_EXECUTE);
dodecahedron (center, radius/(GLdouble)1.73, GL_LINE_LOOP);
glEndList();
}
else {
glCallList(displayList);
free (sizeArray);
}
}

void auxSolidDodecahedron (GLdouble radius)
{
GLdouble *sizeArray;
GLuint displayList;
GLdouble center[3] = {(GLdouble)0.0, (GLdouble)0.0, (GLdouble)0.0};

sizeArray = (GLdouble *) malloc (sizeof (GLdouble) * 1);
*sizeArray = radius;
displayList = findList (DODECASOLID, sizeArray, 1);

if (displayList == 0) {
glNewList(makeModelPtr (DODECASOLID, sizeArray, 1),
GL_COMPILE_AND_EXECUTE);
dodecahedron (center, radius/(GLdouble)1.73, GL_POLYGON);
glEndList();
}
else {
glCallList(displayList);
free (sizeArray);
}
}

/* Render wire frame or solid cones. If no display list with
* the current model size exists, create a new display list.
*/
void auxWireCone (GLdouble base, GLdouble height)
{
GLUquadricObj *quadObj;
GLdouble *sizeArray, *tmp;
GLuint displayList;

sizeArray = (GLdouble *) malloc (sizeof (GLdouble) * 2);
tmp = sizeArray;
*tmp++ = base;
*tmp++ = height;
displayList = findList (CONEWIRE, sizeArray, 2);

if (displayList == 0) {
glNewList(makeModelPtr (CONEWIRE, sizeArray, 2),
GL_COMPILE_AND_EXECUTE);
quadObj = gluNewQuadric ();
gluQuadricDrawStyle (quadObj, GLU_LINE);
gluCylinder (quadObj, base, (GLdouble)0.0, height, 15, 10);
glEndList();
}
else {
glCallList(displayList);
free (sizeArray);
}
}

void auxSolidCone (GLdouble base, GLdouble height)
{
GLUquadricObj *quadObj;
GLdouble *sizeArray, *tmp;
GLuint displayList;

sizeArray = (GLdouble *) malloc (sizeof (GLdouble) * 2);
tmp = sizeArray;
*tmp++ = base;
*tmp++ = height;
displayList = findList (CONEWIRE, sizeArray, 2);

if (displayList == 0) {
glNewList(makeModelPtr (CONEWIRE, sizeArray, 2),
GL_COMPILE_AND_EXECUTE);
quadObj = gluNewQuadric ();
gluQuadricDrawStyle (quadObj, GLU_FILL);
gluQuadricNormals (quadObj, GLU_SMOOTH);
gluCylinder (quadObj, base, (GLdouble)0.0, height, 15, 10);
glEndList();
}
else {
glCallList(displayList);
free (sizeArray);
}
}

/* Routines to build 3 dimensional solids, including:
*
* drawbox, doughnut, icosahedron,
* octahedron, tetrahedron, dodecahedron.
*/

/* drawbox:
*
* draws a rectangular box with the given x, y, and z ranges.
* The box is axis-aligned.
*/
void drawbox(GLdouble x0, GLdouble x1, GLdouble y0, GLdouble y1,
GLdouble z0, GLdouble z1, GLenum type)
{
static GLdouble n[6][3] = {
{-1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {1.0, 0.0, 0.0},
{0.0, -1.0, 0.0}, {0.0, 0.0, 1.0}, {0.0, 0.0, -1.0}
};
static GLint faces[6][4] = {
{ 0, 1, 2, 3 }, { 3, 2, 6, 7 }, { 7, 6, 5, 4 },
{ 4, 5, 1, 0 }, { 5, 6, 2, 1 }, { 7, 4, 0, 3 }
};
GLdouble v[8][3], tmp;
GLint i;

if (x0 > x1) {
tmp = x0; x0 = x1; x1 = tmp;
}
if (y0 > y1) {
tmp = y0; y0 = y1; y1 = tmp;
}
if (z0 > z1) {
tmp = z0; z0 = z1; z1 = tmp;
}
v[0][0] = v[1][0] = v[2][0] = v[3][0] = x0;
v[4][0] = v[5][0] = v[6][0] = v[7][0] = x1;
v[0][1] = v[1][1] = v[4][1] = v[5][1] = y0;
v[2][1] = v[3][1] = v[6][1] = v[7][1] = y1;
v[0][2] = v[3][2] = v[4][2] = v[7][2] = z0;
v[1][2] = v[2][2] = v[5][2] = v[6][2] = z1;

for (i = 0; i < 6; i++) {
glBegin(type);
glNormal3dv(&n[i][0]);
glVertex3dv(&v[faces[i][0]][0]);
glNormal3dv(&n[i][0]);
glVertex3dv(&v[faces[i][1]][0]);
glNormal3dv(&n[i][0]);
glVertex3dv(&v[faces[i][2]][0]);
glNormal3dv(&n[i][0]);
glVertex3dv(&v[faces[i][3]][0]);
glEnd();
}
}

/* doughnut:
*
* draws a doughnut, centered at (0, 0, 0) whose axis is aligned with
* the z-axis. The doughnut's major radius is R, and minor radius is r.
*/

void doughnut(GLdouble r, GLdouble R, GLint nsides, GLint rings, GLenum type)
{
int i, j;
GLdouble theta, phi, theta1, phi1;
GLdouble p0[03], p1[3], p2[3], p3[3];
GLdouble n0[3], n1[3], n2[3], n3[3];

for (i = 0; i < rings; i++) {
theta = (GLdouble)i*(GLdouble)2.0*PI/rings;
theta1 = (GLdouble)(i+1)*(GLdouble)2.0*PI/rings;
for (j = 0; j < nsides; j++) {
phi = (GLdouble)j*(GLdouble)2.0*PI/nsides;
phi1 = (GLdouble)(j+1)*(GLdouble)2.0*PI/nsides;

p0[0] = cos(theta)*(R + r*cos(phi));
p0[1] = -sin(theta)*(R + r*cos(phi));
p0[2] = r*sin(phi);

p1[0] = cos(theta1)*(R + r*cos(phi));
p1[1] = -sin(theta1)*(R + r*cos(phi));
p1[2] = r*sin(phi);

p2[0] = cos(theta1)*(R + r*cos(phi1));
p2[1] = -sin(theta1)*(R + r*cos(phi1));
p2[2] = r*sin(phi1);

p3[0] = cos(theta)*(R + r*cos(phi1));
p3[1] = -sin(theta)*(R + r*cos(phi1));
p3[2] = r*sin(phi1);

n0[0] = cos(theta)*(cos(phi));
n0[1] = -sin(theta)*(cos(phi));
n0[2] = sin(phi);

n1[0] = cos(theta1)*(cos(phi));
n1[1] = -sin(theta1)*(cos(phi));
n1[2] = sin(phi);

n2[0] = cos(theta1)*(cos(phi1));
n2[1] = -sin(theta1)*(cos(phi1));
n2[2] = sin(phi1);

n3[0] = cos(theta)*(cos(phi1));
n3[1] = -sin(theta)*(cos(phi1));
n3[2] = sin(phi1);

m_xformpt(p0, p0, n0, n0);
m_xformpt(p1, p1, n1, n1);
m_xformpt(p2, p2, n2, n2);
m_xformpt(p3, p3, n3, n3);

glBegin(type);
glNormal3dv(n3);
glVertex3dv(p3);
glNormal3dv(n2);
glVertex3dv(p2);
glNormal3dv(n1);
glVertex3dv(p1);
glNormal3dv(n0);
glVertex3dv(p0);
glEnd();
}
}
}

/* octahedron data: The octahedron produced is centered
* at the origin and has radius 1.0
*/
static GLdouble odata[6][3] = {
{1.0, 0.0, 0.0},
{-1.0, 0.0, 0.0},
{0.0, 1.0, 0.0},
{0.0, -1.0, 0.0},
{0.0, 0.0, 1.0},
{0.0, 0.0, -1.0}
};

static int ondex[8][3] = {
{0, 4, 2}, {1, 2, 4}, {0, 3, 4}, {1, 4, 3},
{0, 2, 5}, {1, 5, 2}, {0, 5, 3}, {1, 3, 5}
};

/* tetrahedron data: */

#define T 1.73205080756887729

static GLdouble tdata[4][3] = {
{T, T, T}, {T, -T, -T}, {-T, T, -T}, {-T, -T, T}
};

static int tndex[4][3] = {
{0, 1, 3}, {2, 1, 0}, {3, 2, 0}, {1, 2, 3}
};

/* icosahedron data: These numbers are rigged to
* make an icosahedron of radius 1.0
*/

#define X .525731112119133606
#define Z .850650808352039932

static GLdouble idata[12][3] = {
{-X, 0, Z},
{X, 0, Z},
{-X, 0, -Z},
{X, 0, -Z},
{0, Z, X},
{0, Z, -X},
{0, -Z, X},
{0, -Z, -X},
{Z, X, 0},
{-Z, X, 0},
{Z, -X, 0},
{-Z, -X, 0}
};

static int index[20][3] = {
{0, 4, 1}, {0, 9, 4},
{9, 5, 4}, {4, 5, 8},
{4, 8, 1}, {8, 10, 1},
{8, 3, 10}, {5, 3, 8},
{5, 2, 3}, {2, 7, 3},
{7, 10, 3}, {7, 6, 10},
{7, 11, 6}, {11, 0, 6},
{0, 1, 6}, {6, 1, 10},
{9, 0, 11}, {9, 11, 2},
{9, 2, 5}, {7, 2, 11},
};

/* icosahedron:
*
* Draws an icosahedron with center at p0 having the
* given radius.
*/

static void icosahedron(GLdouble p0[3], GLdouble radius, GLenum shadeType)
{
int i;

for (i = 0; i < 20; i++)
drawtriangle(i, 0, 1, p0, radius, shadeType, 0);
}

/* octahedron:
*
* Draws an octahedron with center at p0 having the
* given radius.
*/
static void octahedron(GLdouble p0[3], GLdouble radius, GLenum shadeType)
{
int i;

for (i = 0; i < 8; i++)
drawtriangle(i, 1, 1, p0, radius, shadeType, 0);
}

/* tetrahedron:
*
* Draws an tetrahedron with center at p0 having the
* given radius.
*/

static void tetrahedron(GLdouble p0[3], GLdouble radius, GLenum shadeType)
{
int i;

for (i = 0; i < 4; i++)
drawtriangle(i, 2, 1, p0, radius, shadeType, 0);
}

static void subdivide(int depth, GLdouble *v0, GLdouble *v1, GLdouble *v2,
GLdouble p0[3], GLdouble radius, GLenum shadeType, int avnormal)
{
GLdouble w0[3], w1[3], w2[3];
GLdouble l;
int i, j, k, n;

for (i = 0; i < depth; i++)
for (j = 0; i + j < depth; j++) {
k = depth - i - j;
for (n = 0; n < 3; n++) {
w0[n] = (i*v0[n] + j*v1[n] + k*v2[n])/depth;
w1[n] = ((i+1)*v0[n] + j*v1[n] + (k-1)*v2[n])/depth;
w2[n] = (i*v0[n] + (j+1)*v1[n] + (k-1)*v2[n])/depth;
}
l = sqrt(w0[0]*w0[0] + w0[1]*w0[1] + w0[2]*w0[2]);
w0[0] /= l; w0[1] /= l; w0[2] /= l;
l = sqrt(w1[0]*w1[0] + w1[1]*w1[1] + w1[2]*w1[2]);
w1[0] /= l; w1[1] /= l; w1[2] /= l;
l = sqrt(w2[0]*w2[0] + w2[1]*w2[1] + w2[2]*w2[2]);
w2[0] /= l; w2[1] /= l; w2[2] /= l;
recorditem(w1, w0, w2, p0, radius, shadeType, avnormal);
}
for (i = 0; i < depth-1; i++)
for (j = 0; i + j < depth-1; j++) {
k = depth - i - j;
for (n = 0; n < 3; n++) {
w0[n] = ((i+1)*v0[n] + (j+1)*v1[n] + (k-2)*v2[n])/depth;
w1[n] = ((i+1)*v0[n] + j*v1[n] + (k-1)*v2[n])/depth;
w2[n] = (i*v0[n] + (j+1)*v1[n] + (k-1)*v2[n])/depth;
}
l = sqrt(w0[0]*w0[0] + w0[1]*w0[1] + w0[2]*w0[2]);
w0[0] /= l; w0[1] /= l; w0[2] /= l;
l = sqrt(w1[0]*w1[0] + w1[1]*w1[1] + w1[2]*w1[2]);
w1[0] /= l; w1[1] /= l; w1[2] /= l;
l = sqrt(w2[0]*w2[0] + w2[1]*w2[1] + w2[2]*w2[2]);
w2[0] /= l; w2[1] /= l; w2[2] /= l;
recorditem(w0, w1, w2, p0, radius, shadeType, avnormal);
}
}

static void drawtriangle(int i, int geomType, int depth,
GLdouble p0[3], GLdouble radius, GLenum shadeType, int avnormal)
{
GLdouble *x0, *x1, *x2;

switch (geomType) {
case 0: /* icosahedron */
x0 = &idata[index[i][0]][0];
x1 = &idata[index[i][1]][0];
x2 = &idata[index[i][2]][0];
break;
case 1: /* octahedron */
x0 = &odata[ondex[i][0]][0];
x1 = &odata[ondex[i][1]][0];
x2 = &odata[ondex[i][2]][0];
break;
case 2: /* tetrahedron */
x0 = &tdata[tndex[i][0]][0];
x1 = &tdata[tndex[i][1]][0];
x2 = &tdata[tndex[i][2]][0];
break;
}
subdivide(depth, x0, x1, x2, p0, radius, shadeType, avnormal);
}

static void recorditem(GLdouble *n1, GLdouble *n2, GLdouble *n3,
GLdouble center[3], GLdouble radius, GLenum shadeType, int avnormal)
{
GLdouble p1[3], p2[3], p3[3], q0[3], q1[3], n11[3], n22[3], n33[3];
int i;

for (i = 0; i < 3; i++) {
p1[i] = n1[i]*radius + center[i];
p2[i] = n2[i]*radius + center[i];
p3[i] = n3[i]*radius + center[i];
}
if (avnormal == 0) {
diff3(p1, p2, q0);
diff3(p2, p3, q1);
crossprod(q0, q1, q1);
normalize(q1);
m_xformpt(p1, p1, q1, n11);

m_xformptonly(p2, p2); 
m_xformptonly(p3, p3);

glBegin (shadeType);
glNormal3dv(n11);
glVertex3dv(p1);
glVertex3dv(p2);
glVertex3dv(p3);
glEnd();
return;
}
m_xformpt(p1, p1, n1, n11);
m_xformpt(p2, p2, n2, n22);
m_xformpt(p3, p3, n3, n33);

glBegin (shadeType);
glNormal3dv(n11);
glVertex3dv(p1);
glNormal3dv(n22);
glVertex3dv(p2);
glNormal3dv(n33);
glVertex3dv(p3);
glEnd();
}

static GLdouble dodec[20][3];

static void initdodec()
{
GLdouble alpha, beta;

alpha = sqrt((double)2.0/((double)3.0 + sqrt((double)5.0)));
beta = (double)1.0 + sqrt((double)6.0/((double)3.0 + sqrt((double)5.0)) - (double)2.0 + (double)2.0*sqrt((double)2.0/((double)3.0 +
sqrt((double)5.0))));
dodec[0][0] = -alpha; dodec[0][1] = 0; dodec[0][2] = beta;
dodec[1][0] = alpha; dodec[1][1] = 0; dodec[1][2] = beta;
dodec[2][0] = -1; dodec[2][1] = -1; dodec[2][2] = -1;
dodec[3][0] = -1; dodec[3][1] = -1; dodec[3][2] = 1;
dodec[4][0] = -1; dodec[4][1] = 1; dodec[4][2] = -1;
dodec[5][0] = -1; dodec[5][1] = 1; dodec[5][2] = 1;
dodec[6][0] = 1; dodec[6][1] = -1; dodec[6][2] = -1;
dodec[7][0] = 1; dodec[7][1] = -1; dodec[7][2] = 1;
dodec[8][0] = 1; dodec[8][1] = 1; dodec[8][2] = -1;
dodec[9][0] = 1; dodec[9][1] = 1; dodec[9][2] = 1;
dodec[10][0] = beta; dodec[10][1] = alpha; dodec[10][2] = 0;
dodec[11][0] = beta; dodec[11][1] = -alpha; dodec[11][2] = 0;
dodec[12][0] = -beta; dodec[12][1] = alpha; dodec[12][2] = 0;
dodec[13][0] = -beta; dodec[13][1] = -alpha; dodec[13][2] = 0;
dodec[14][0] = -alpha; dodec[14][1] = 0; dodec[14][2] = -beta;
dodec[15][0] = alpha; dodec[15][1] = 0; dodec[15][2] = -beta;
dodec[16][0] = 0; dodec[16][1] = beta; dodec[16][2] = alpha;
dodec[17][0] = 0; dodec[17][1] = beta; dodec[17][2] = -alpha;
dodec[18][0] = 0; dodec[18][1] = -beta; dodec[18][2] = alpha;
dodec[19][0] = 0; dodec[19][1] = -beta; dodec[19][2] = -alpha;
}

/* dodecahedron:
*
* Draws an dodecahedron with center at 0.0. The radius
* is sqrt(3).
*/
static void dodecahedron(GLdouble center[3], GLdouble sc, GLenum type)
{
static int inited = 0;

if ( inited == 0) {
inited = 1;
initdodec();
}
m_pushmatrix();
m_translate(center[0], center[1], center[2]);
m_scale(sc, sc, sc);
pentagon(0, 1, 9, 16, 5, type);
pentagon(1, 0, 3, 18, 7, type);
pentagon(1, 7, 11, 10, 9, type);
pentagon(11, 7, 18, 19, 6, type);
pentagon(8, 17, 16, 9, 10, type);
pentagon(2, 14, 15, 6, 19, type);
pentagon(2, 13, 12, 4, 14, type);
pentagon(2, 19, 18, 3, 13, type);
pentagon(3, 0, 5, 12, 13, type);
pentagon(6, 15, 8, 10, 11, type);
pentagon(4, 17, 8, 15, 14, type);
pentagon(4, 12, 5, 16, 17, type);
m_popmatrix();
}

static void pentagon(int a, int b, int c, int d, int e, GLenum shadeType)
{
GLdouble n0[3], d1[3], d2[3], d3[3], d4[3], d5[3], nout[3];

diff3(&dodec[a][0], &dodec[b][0], d1);
diff3(&dodec[b][0], &dodec[c][0], d2);
crossprod(d1, d2, n0);
normalize(n0);
m_xformpt(&dodec[a][0], d1, n0, nout);
m_xformptonly(&dodec[b][0], d2);
m_xformptonly(&dodec[c][0], d3);
m_xformptonly(&dodec[d][0], d4);
m_xformptonly(&dodec[e][0], d5);

glBegin (shadeType);
glNormal3dv(nout);
glVertex3dv(d1);
glVertex3dv(d2);
glVertex3dv(d3);
glVertex3dv(d4);
glVertex3dv(d5);
glEnd();
}

/* linked lists--display lists for each different
* type of geometric objects. The linked list is
* searched, until an object of the requested
* size is found. If no geometric object of that size
* has been previously made, a new one is created.
*/
GLuint findList (int index, GLdouble *paramArray, int size)
{
MODELPTR endList;
int found = 0;

endList = lists[index];
while (endList != NULL) {
if (compareParams (endList->params, paramArray, size))
return (endList->list);
endList = endList->ptr;
}
/* if not found, return 0 and calling routine should
* make a new list
*/
return (0);
}

int compareParams (GLdouble *oneArray, GLdouble *twoArray, int size)
{
int i;
int matches = 1;

for (i = 0; (i < size) && matches; i++) {
if (*oneArray++ != *twoArray++)
matches = 0;
}
return (matches);
}

GLuint makeModelPtr (int index, GLdouble *sizeArray, int count)
{
MODELPTR newModel;

newModel = (MODELPTR) malloc (sizeof (MODEL));
newModel->list = glGenLists (1);
newModel->numParam = count;
newModel->params = sizeArray;
newModel->ptr = lists[index];
lists[index] = newModel;

return (newModel->list);
}