XC.CXX

/******************************Module*Header*******************************\ 
* Module Name: xc.cxx
*
* Cross-section (xc) object stuff
*
* Copyright 1995 - 1998 Microsoft Corporation
*
\**************************************************************************/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <sys/types.h>
#include <time.h>
#include <windows.h>
#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glaux.h>
#include <float.h>

#include "sscommon.h"
#include "sspipes.h"
#include "eval.h"
#include "xc.h"

/**************************************************************************\
* XC::CalcArcACValues90
*
* Calculate arc control points for a 90 degree rotation of an xc
*
* Arc is a quarter-circle
* - 90 degree is much easier, so we special case it
* - radius is distance from xc-origin to hinge of turn
*
\**************************************************************************/

void
XC::CalcArcACValues90( int dir, float radius, float *acPts )
{
int i;
float sign;
int offset;
float *ppts = (float *) pts;

// 1) calc 'r' values for each point (4 turn possibilities/point). From
// this can determine ac, which is extrusion of point from xc face

switch( dir ) {
case PLUS_X:
offset = 0;
sign = -1.0f;
break;
case MINUS_X:
offset = 0;
sign = 1.0f;
break;
case PLUS_Y:
offset = 1;
sign = -1.0f;
break;
case MINUS_Y:
offset = 1;
sign = 1.0f;
break;
}

for( i = 0; i < numPts; i++, ppts+=2, acPts++ ) {
*acPts = EVAL_CIRC_ARC_CONTROL * (radius + (sign * ppts[offset]));
}
// replicate !
*acPts = *(acPts - numPts);
}

/**************************************************************************\
* XC::CalcArcACValuesByDistance
*
* Use the distance of each xc point from the xc origin, as the radius for
* an arc control value.
*
\**************************************************************************/

void
XC::CalcArcACValuesByDistance( float *acPts )
{
int i;
float r;
POINT2D *ppts = pts;

for( i = 0; i < numPts; i++, ppts++ ) {
r = (float) sqrt( ppts->x*ppts->x + ppts->y*ppts->y );
*acPts++ = EVAL_CIRC_ARC_CONTROL * r;
}
// replicate !
*acPts = *(acPts - numPts);
}

/**************************************************************************\
* ELLIPTICAL_XC::SetControlPoints
*
* Set the 12 control points for a circle at origin in z=0 plane
*
* Points go CCW from +x
*
\**************************************************************************/

void
ELLIPTICAL_XC::SetControlPoints( GLfloat r1, GLfloat r2 )
{
GLfloat ac1, ac2;

ac1 = EVAL_CIRC_ARC_CONTROL * r2;
ac2 = EVAL_CIRC_ARC_CONTROL * r1;

// create 12-pt. set CCW from +x

// last 2 points of right triplet
pts[0].x = r1;
pts[0].y = 0.0f;
pts[1].x = r1;
pts[1].y = ac1;

// top triplet
pts[2].x = ac2;
pts[2].y = r2;
pts[3].x = 0.0f;
pts[3].y = r2;
pts[4].x = -ac2;
pts[4].y = r2;

// left triplet
pts[5].x = -r1;
pts[5].y = ac1;
pts[6].x = -r1;
pts[6].y = 0.0f;
pts[7].x = -r1;
pts[7].y = -ac1;

// bottom triplet
pts[8].x = -ac2;
pts[8].y = -r2;
pts[9].x = 0.0f;
pts[9].y = -r2;
pts[10].x = ac2;
pts[10].y = -r2;

// first point of first triplet
pts[11].x = r1;
pts[11].y = -ac1;
}

/**************************************************************************\
* RANDOM4ARC_XC::SetControlPoints
*
* Set random control points for xc
* Points go CCW from +x
*
\**************************************************************************/

void
RANDOM4ARC_XC::SetControlPoints( float radius )
{
int i;
GLfloat r[4];
float rMin = 0.5f * radius;
float distx, disty;

// figure the radius of each side first

for( i = 0; i < 4; i ++ )
r[i] = ss_fRand( rMin, radius );

// The 4 r's now describe a box around the origin - this restricts stuff

// Now need to select a point along each edge of the box as the joining
// points for each arc (join points are at indices 0,3,6,9)

pts[0].x = r[RIGHT];
pts[3].y = r[TOP];
pts[6].x = -r[LEFT];
pts[9].y = -r[BOTTOM];

// quarter of distance between edges
disty = (r[TOP] - -r[BOTTOM]) / 4.0f;
distx = (r[RIGHT] - -r[LEFT]) / 4.0f;

// uh, put'em somwhere in the middle half of each side
pts[0].y = ss_fRand( -r[BOTTOM] + disty, r[TOP] - disty );
pts[6].y = ss_fRand( -r[BOTTOM] + disty, r[TOP] - disty );
pts[3].x = ss_fRand( -r[LEFT] + distx, r[RIGHT] - distx );
pts[9].x = ss_fRand( -r[LEFT] + distx, r[RIGHT] - distx );

// now can calc ac's
// easy part first:
pts[1].x = pts[11].x = pts[0].x;
pts[2].y = pts[4].y = pts[3].y;
pts[5].x = pts[7].x = pts[6].x;
pts[8].y = pts[10].y = pts[9].y;

// right side ac's
disty = (r[TOP] - pts[0].y) / 4.0f;
pts[1].y = ss_fRand( pts[0].y + disty, r[TOP] );
disty = (pts[0].y - -r[BOTTOM]) / 4.0f;
pts[11].y = ss_fRand( -r[BOTTOM], pts[0].y - disty );

// left side ac's
disty = (r[TOP] - pts[6].y) / 4.0f;
pts[5].y = ss_fRand( pts[6].y + disty, r[TOP]);
disty = (pts[6].y - -r[BOTTOM]) / 4.0f;
pts[7].y = ss_fRand( -r[BOTTOM], pts[6].y - disty );

// top ac's
distx = (r[RIGHT] - pts[3].x) / 4.0f;
pts[2].x = ss_fRand( pts[3].x + distx, r[RIGHT] );
distx = (pts[3].x - -r[LEFT]) / 4.0f;
pts[4].x = ss_fRand( -r[LEFT], pts[3].x - distx );

// bottom ac's
distx = (r[RIGHT] - pts[9].x) / 4.0f;
pts[10].x = ss_fRand( pts[9].x + distx, r[RIGHT] );
distx = (pts[9].x - -r[LEFT]) / 4.0f;
pts[8].x = ss_fRand( -r[LEFT], pts[9].x - distx );
}


/**************************************************************************\
* ConvertPtsZ
*
* Convert the 2D pts in an xc, to 3D pts in point buffer, with z.
*
* Also replicate the last point.
\**************************************************************************/

void
XC::ConvertPtsZ( POINT3D *newpts, float z )
{
int i;
POINT2D *xcPts = pts;

for( i = 0; i < numPts; i++, newpts++ ) {
*( (POINT2D *) newpts ) = *xcPts++;
newpts->z = z;
}
*newpts = *(newpts - numPts);
}

/**************************************************************************\
* XC::CalcBoundingBox
*
* Calculate bounding box in x/y plane for xc
\**************************************************************************/


void
XC::CalcBoundingBox( )
{
POINT2D *ppts = pts;
int i;
float xMin, xMax, yMax, yMin;

// initialize to really insane numbers
xMax = yMax = -FLT_MAX;
xMin = yMin = FLT_MAX;

// compare with rest of points
for( i = 0; i < numPts; i ++, ppts++ ) {
if( ppts->x < xMin )
xMin = ppts->x;
else if( ppts->x > xMax )
xMax = ppts->x;
if( ppts->y < yMin )
yMin = ppts->y;
else if( ppts->y > yMax )
yMax = ppts->y;
}
xLeft = xMin;
xRight = xMax;
yBottom = yMin;
yTop = yMax;
}

/**************************************************************************\
*
* MinTurnRadius
*
* Get minimum radius for the xc to turn in given direction.
*
* If the turn radius is less than this minimum, then primitive will 'fold'
* over itself at the inside of the turn, creating ugliness.
*
\**************************************************************************/

float
XC::MinTurnRadius( int relDir )
{
// for now, assume xRight, yTop positive, xLeft, yBottom negative
// otherwise, might want to consider 'negative'radius
switch( relDir ) {
case PLUS_X:
return( xRight );
case MINUS_X:
return( - xLeft );
case PLUS_Y:
return( yTop );
case MINUS_Y:
return( - yBottom );
default:
return(0.0f);
}
}
/**************************************************************************\
*
* XC::MaxExtent
*
* Get maximum extent of the xc in x and y
*
\**************************************************************************/

float
XC::MaxExtent( )
{
float max;

max = xRight;

if( yTop > max )
max = yTop;
if( -xLeft > max )
max = -xLeft;
if( -yBottom > max )
max = -yBottom;

return max;
}

/**************************************************************************\
*
* XC::Scale
*
* Scale an XC's points and extents by supplied scale value
*
\**************************************************************************/

void
XC::Scale( float scale )
{
int i;
POINT2D *ppts = pts;

for( i = 0; i < numPts; i ++, ppts++ ) {
ppts->x *= scale;
ppts->y *= scale;
}

xLeft *= scale;
xRight *= scale;
yBottom *= scale;
yTop *= scale;
}

/**************************************************************************\
* ~XC::XC
*
* Destructor
*
\**************************************************************************/

XC::~XC()
{
if( pts )
LocalFree( pts );
}

/**************************************************************************\
* XC::XC
*
* Constructor
*
* - Allocates point buffer for the xc
*
\**************************************************************************/

XC::XC( int nPts )
{
numPts = nPts;
pts = (POINT2D *) LocalAlloc( LMEM_FIXED, numPts * sizeof(POINT2D) );
SS_ASSERT( pts != 0, "XC constructor\n" );
}


XC::XC( XC *xc )
{
numPts = xc->numPts;
pts = (POINT2D *) LocalAlloc( LMEM_FIXED, numPts * sizeof(POINT2D) );
SS_ASSERT( pts != 0, "XC constructor\n" );
RtlCopyMemory( pts, xc->pts, numPts * sizeof(POINT2D) );

xLeft = xc->xLeft;
xRight = xc->xRight;
yBottom = xc->yBottom;
yTop = xc->yTop;
}

/**************************************************************************\
*
* ELLIPTICAL_XC::ELLIPTICALXC
*
* Elliptical XC constructor

* These have 4 sections of 4 pts each, with pts shared between sections.
*
\**************************************************************************/

ELLIPTICAL_XC::ELLIPTICAL_XC( float r1, float r2 )
// initialize base XC with numPts
: XC( (int) EVAL_XC_CIRC_SECTION_COUNT * (EVAL_ARC_ORDER - 1))
{
SetControlPoints( r1, r2 );
CalcBoundingBox( );
}

/**************************************************************************\
*
* RANDOM4ARC_XC::RANDOM4ARC_XC
*
* Random 4-arc XC constructor

* The bounding box is 2*r each side
* These have 4 sections of 4 pts each, with pts shared between sections.
*
\**************************************************************************/
RANDOM4ARC_XC::RANDOM4ARC_XC( float r )
// initialize base XC with numPts
: XC( (int) EVAL_XC_CIRC_SECTION_COUNT * (EVAL_ARC_ORDER - 1))
{
SetControlPoints( r );
CalcBoundingBox( );
}