The following table lists the IRIS GL functions for drawing NURBS surfaces and their equivalent OpenGL functions.
IRIS GL Function | OpenGL Function | Meaning |
---|---|---|
bgnsurface | gluBeginSurface | Begin a surface definition. |
nurbssurface | gluNurbsSurface | Specify surface attributes. |
endsurface | gluEndSurface | End a surface definition. |
The following table lists IRIS GL parameters for surface types and their equivalent OpenGL parameters.
IRIS GL Type | OpenGL Type | Meaning |
---|---|---|
N_V3D | GL_MAP2_VERTEX_3 | Polynomial curve. |
N_V3DR | GL_MAP2_VERTEX_4 | Rational curve. |
N_C4D | GL_MAP2_COLOR_4 | Control points define color surface in (R,G,B,A) form. |
N_C4DR | — | — |
N_T2D | GL_MAP2_TEXTURE _COORD_2 |
Control points are texture coordinates. |
N_T2DR | GL_MAP2_TEXTURE _COORD_3 |
Control points are texture coordinates. |
— | GL_MAP2_NORMAL | Control points are normals. |
For more information on available evaluator types, see glMap2.
The following code sample draws a trimmed NURBS surface:
/*
* trim.c
* This program draws a NURBS surface in the shape of a
* symmetrical hill, using both a NURBS curve and pwl
* (piecewise linear) curve to trim part of the surface
*/
#include <GL/gl.h>
#include <GL/glu.h>
#include "aux.h"
GLfloat ctlpoints[4][4][3];
GLUnurbsObj *theNurb;
/*
* Initializes the control points of the surface to
* a small hill. The control points range from -3 to
* +3 in x, y, and z
*/
void init_surface(void)
{
int u, v;
for (u = 0; u < 4; u++) {
for (v = 0; v < 4; v++) {
ctlpoints[u][v][0] = 2.0*((GLfloat)u - 1.5);
ctlpoints[u][v][1] = 2.0*((GLfloat)v - 1.5);
if ( (u == 1 || u == 2) && (v == 1 || v == 2))
ctlpoints[u][v][2] = 3.0;
else
ctlpoints[u][v][2] = -3.0;
}
}
}
/* Initialize material property and depth buffer
*/
void myinit(void)
{
GLfloat mat_diffuse[] = { 0.6, 0.6, 0.6, 1.0 };
GLfloat mat_specular[] = { 0.9, 0.9, 0.9, 1.0 };
GLfloat mat_shininess[] = { 128.0 };
glClearColor (0.0, 0.0, 0.0, 1.0);
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glDepthFunc(GL_LEQUAL);
glEnable(GL_DEPTH_TEST);
glEnable(GL_AUTO_NORMAL);
glEnable(GL_NORMALIZE);
init_surface();
theNurb = gluNewNurbsRenderer();
gluNurbsProperty(theNurb, GLU_SAMPLING_TOLERANCE, 50.0);
gluNurbsProperty(theNurb, GLU_DISPLAY_MODE, GLU_FILL);
}
void display(void)
{
GLfloat knots[8] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};
GLfloat edgePt[5][2] = /* counter clockwise */
{{0.0, 0.0}, {1.0, 0.0}, {1.0, 1.0}, {0.0, 1.0},
{0.0, 0.0}};
GLfloat curvePt[4][2] = /* clockwise */
{{0.25, 0.5}, {0.25, 0.75}, {0.75, 0.75}, {0.75, 0.5}};
GLfloat curveKnots[8] =
{0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};
GLfloat pwlPt[4][2] = /* clockwise */
{{0.75, 0.5}, {0.5, 0.25}, {0.25, 0.5}};
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix();
glRotatef(330.0, 1.,0.,0.);
glScalef (0.5, 0.5, 0.5);
gluBeginSurface(theNurb);
gluNurbsSurface(theNurb,
8, knots,
8, knots,
4 * 3,
3,
&ctlpoints[0][0][0],
4, 4,
GL_MAP2_VERTEX_3);
gluBeginTrim (theNurb);
gluPwlCurve (theNurb, 5, &edgePt[0][0], 2,
GLU_MAP1_TRIM_2);
gluEndTrim (theNurb);
gluBeginTrim (theNurb);
gluNurbsCurve (theNurb, 8, curveKnots, 2,
&curvePt[0][0], 4, GLU_MAP1_TRIM_2);
gluPwlCurve (theNurb, 3, &pwlPt[0][0], 2,
GLU_MAP1_TRIM_2);
gluEndTrim (theNurb);
gluEndSurface(theNurb);
glPopMatrix();
glFlush();
}
void myReshape(GLsizei w, GLsizei h)
{
glViewport(0, 0, w, h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective (45.0, (GLdouble)w/(GLdouble)h, 3.0, 8.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef (0.0, 0.0, -5.0);
}
/* Main Loop
*/
int main(int argc, char** argv)
{
auxInitDisplayMode (AUX_SINGLE | AUX_RGBA | AUX_DEPTH);
auxInitPosition (0, 0, 500, 500);
auxInitWindow (argv[0]);
myinit();
auxReshapeFunc (myReshape);
auxMainLoop(display);
}