HOWTO: Overload New to Reduce Memory FragmentationLast reviewed: October 3, 1997Article ID: Q139638 |
The information in this article applies to:
SUMMARYProviding a dedicated heap by overloading new and delete for a class can significantly reduce memory fragmentation. Any class that is frequently instantiated using new is a candidate for providing a dedicated heap. This method works best when many instances of a class are used in close time proximity but random order. For example, this method will work well for a newly created list that is about to be sorted. This method impairs performance where the use of instances of the class is more time proximate to the use of other heap-allocated objects. For example, this method would impair the performance of a scrolling, in-memory view of rows read from a database. There is no easy substitute for careful analysis of locality of reference, where locality is gauged according to the page size used by the host operating system's virtual memory management and time separation. This technique should not be applied to a base class that can be or might be derived from if data is to be added to the derived class.
MORE INFORMATIONThe following sample code stores the dedicated heap handle in the static member variable m_hHeap. The heap handle is initialized to NULL in the Classdemo.cpp file. When a class object is instantiated using new, the overloaded new is called. If the handle is NULL, the heap is created. If the handle is not NULL, HeapAlloc is called to allocate the requested size.
Sample Code
/* Compile options needed: none */ /* Classdemo.h file */ #ifndef __CLASSDEMO_H__ #define __CLASSDEMO_H__ #include <windows.h> class ClassDemo { // private member vars and functions for ClassDemo class static HANDLE m_hHeap; // fixed heap handle int m_nMyData[100]; // class data public: // public member functions for ClassDemo class // declaration of new & delete operator overloads void* operator new(unsigned int nSize); void operator delete(void* pObj); static void HeapCreate(); }; #define INITIAL_HEAP_SIZE 4096 // initial heap size #define CLASS_DEMO_OBJS_MAX 100000 // max number of objects used inline void* ClassDemo::operator new(unsigned int nSize) { // allocate memory using fixed heap if (m_hHeap == NULL) // if NULL, needs to be created { HeapCreate(); // create heap if (m_hHeap == NULL) { return NULL; // HeapCreate failed } } // return pointer to allocated memory return HeapAlloc(m_hHeap, 0, nSize); } inline void ClassDemo::operator delete(void* pObj) { // free memory from fixed heap HeapFree(m_hHeap, 0, pObj); } #endif // __CLASSDEMO_H__ /* End of Classdemo.h file */ /* Classdemo.cpp file */ #include <stdio.h> #include "ClassDemo.h" HANDLE ClassDemo::m_hHeap = NULL; // Initialize handle void ClassDemo::HeapCreate() { int nRet = IDRETRY; // message box return int nSize = CLASS_DEMO_OBJS_MAX * sizeof(ClassDemo);// max heap size m_hHeap = ::HeapCreate(0, // heap flags INITIAL_HEAP_SIZE, // initial size of heap nSize); // max heap size while ((m_hHeap == NULL) && (nRet != IDIGNORE)) { // keep trying until no error or user ignores char szMsg[80]; // message buffer // format message sprintf(szMsg, "Could allocate a heap of size %d", nSize); // Display error nRet = MessageBox(NULL, szMsg, NULL, MB_ABORTRETRYIGNORE | MB_TASKMODAL); if (nSize < sizeof(ClassDemo)) { return; // heap would be too small to be usefull, return } switch (nRet) { case IDABORT: // user selected abort { abort(); } case IDIGNORE: // user selected ignore { return; } default: // user selected retry, the message box could not { // be displayed, or unknown return code nSize /= 2; // try a smaller request m_hHeap = ::HeapCreate( 0, // heap flags INITIAL_HEAP_SIZE, // initial size of heap nSize); // max heap size break; } } } } /* End of Classdemo.cpp file */ |
Additional query words: Windows 95 10.00 10.10 10.20
© 1998 Microsoft Corporation. All rights reserved. Terms of Use. |