The following is a list of nonintrinsic math functions that can be derived from the intrinsic math functions:
|
Function |
Derived equivalents | |
|
Secant |
Sec(X) = 1 / Cos(X) | |
|
Cosecant |
Cosec(X) = 1 / Sin(X) | |
|
Cotangent |
Cotan((X) = 1 / Tan(X) | |
|
Inverse Sine |
Arcsin(X) = Atn(X / Sqr(-X * X + 1)) | |
|
Inverse Cosine |
Arccos(X) = Atn(-X / Sqr(-X * X + 1)) + 1.5708 | |
|
Inverse Secant |
Arcsec(X) = Atn(X / Sqr(X * X - 1)) + Sgn((X) -1) * 1.5708 | |
|
Inverse Cosecant |
Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * 1.5708 | |
|
Inverse Cotangent |
Arccotan(X) = Atn(X) + 1.5708 | |
|
Hyperbolic Sine |
HSin(X) = (Exp(X) - Exp(-X)) / 2 | |
|
Hyperbolic Cosine |
HCos(X) = (Exp(X) + Exp(-X)) / 2 | |
|
Hyperbolic Tangent |
HTan(X) = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X)) | |
|
Hyperbolic Secant |
HSec(X) = 2 / (Exp(X) + Exp(-X)) | |
|
Hyperbolic Cosecant |
HCosec(X) = 2 / (Exp(X) - Exp(-X)) | |
|
Hyperbolic Cotangent |
HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X)) | |
|
Inverse Hyperbolic Sine |
HArcsin(X) = Log(X + Sqr(X * X + 1)) | |
|
Inverse Hyperbolic Cosine |
HArccos(X) = Log(X + Sqr(X * X - 1)) | |
|
Inverse Hyperbolic Tangent |
HArctan(X) = Log((1 + X) / (1 - X)) / 2 | |
|
Inverse Hyperbolic Secant |
HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X) | |
|
Inverse Hyperbolic Cosecant |
HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) +1) / X) | |
|
Inverse Hyperbolic Cotangent |
HArccotan(X) = Log((X + 1) / (X - 1)) / 2 | |
|
Logarithm to base N |
LogN(X) = Log(X) / Log(N) | |
See Also
Atn Function, Cos Function, Exp Function, Log Function, Sin Function, Sqr Function, Tan Function.