Description
Used to perform a logical implication on two expressions.
Syntax
result = expression1 Imp expression2
The Imp operator syntax has these parts:
Part |
Description |
result |
Any numeric variable. |
expression1 |
Any expression. |
expression2 |
Any expression. |
Remarks
The following table illustrates how result is determined:
If expression1 is |
And expression2 is |
The result is |
True |
True |
True |
True |
False |
False |
True |
Null |
Null |
False |
True |
True |
If expression1 is |
And expression2 is |
The result is |
False |
False |
True |
False |
Null |
True |
Null |
True |
True |
Null |
False |
Null |
Null |
Null |
Null |
The Imp operator performs a bit-wise comparison of identically positioned bits in two numeric expressions and sets the corresponding bit in result according to the following truth table:
If bit in expression1 is |
And bit in expression2 is |
The result is |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
See Also
Operator Precedence.
Example
This example uses the Imp Operator to perform logical implication on two expressions.
A = 10: B = 8: C = 6 : D = Null ' Initialize variables. MyCheck = A > B Imp B > C ' Returns True. MyCheck = A > B Imp C > B ' Returns False. MyCheck = B > A Imp C > B ' Returns True. MyCheck = B > A Imp C > D ' Returns True. MyCheck = C > D Imp B > A ' Returns Null. MyCheck = B Imp A ' Returns -1 (bit-wise comparison).