A More Complex Example

The flattened dataset from the section “Cube and Dataset Example.” looks like this:





[Quarters].
[MEMBER_
CAPTION]




[Months].
[MEMBER_
CAPTION]
[Venkatrao].
[The World].
[North
America].
[USA].
[USA_North].
[Seattle]
[Venkatrao].
[The World].
[North
America].
[USA].
[USA_North].
[Boston]

[Venkatrao].
[The World].
[North
America].
[USA].
[USA_South]
Qtr1 Jan 00 10 20
Qtr1 Feb 01 11 21
Qtr1 Mar 02 12 22
Qtr2 NULL 03 13 23
Qtr3 NULL 04 14 24
Qtr4 Oct 05 15 25
Qtr4 Nov 06 16 26
Qtr4 Dec 07 17 27

(This is the same table continued.)


[Venkatrao].
[The World].
[Asia].
[Japan]
[Netz].
[The World].
[North
America].
[USA].
[USA_North].
[Seattle]
[Netz].
[The World].
[North
America].
[USA].
[USA_North].
[Boston]

[Netz].
[The World].
[North
America].
[USA].
[USA_South]

[Netz].
[The World].
[Asia].
[Japan]
30 40 50 60 70
31 41 51 61 71
32 42 52 62 72
33 43 53 63 73
34 44 54 64 74
35 45 55 65 75
36 46 56 66 76
37 47 57 67 77

Note   In this example, it is assumed that members from the Geography dimension need to be fully qualified to ensure uniqueness, while the members from all other dimensions do not.