The Bessel functions are commonly used in the mathematics of electromagnetic wave theory.
These routines return Bessel functions of the first kind: orders 0, 1, and n, respectively.
These routines return Bessel functions of the second kind: orders 0, 1, and n, respectively.
Example
/* BESSEL.C: This program illustrates Bessel functions,
* including: _j0 _j1 _jn _y0 _y1 _yn
*/
#include <math.h>
#include <stdio.h>
void main( void )
{
double x = 2.387;
int n = 3, c;
printf( "Bessel functions for x = %f:\n", x );
printf( " Kind\t\tOrder\tFunction\tResult\n\n" );
printf( " First\t\t0\t_j0( x )\t%f\n", _j0( x ) );
printf( " First\t\t1\t_j1( x )\t%f\n", _j1( x ) );
for( c = 2; c < 5; c++ )
printf( " First\t\t%d\t_jn( n, x )\t%f\n", c, _jn( c, x ) );
printf( " Second\t0\t_y0( x )\t%f\n", _y0( x ) );
printf( " Second\t1\t_y1( x )\t%f\n", _y1( x ) );
for( c = 2; c < 5; c++ )
printf( " Second\t%d\t_yn( n, x )\t%f\n", c, _yn( c, x ) );
}
Output
Bessel functions for x = 2.387000:
Kind Order Function Result
First 0 _j0( x ) 0.009288
First 1 _j1( x ) 0.522941
First 2 _jn( n, x ) 0.428870
First 3 _jn( n, x ) 0.195734
First 4 _jn( n, x ) 0.063131
Second 0 _y0( x ) 0.511681
Second 1 _y1( x ) 0.094374
Second 2 _yn( n, x ) -0.432608
Second 3 _yn( n, x ) -0.819314
Second 4 _yn( n, x ) -1.626833
Floating-Point Support Routines
See Also _matherr