The following is a list of nonintrinsic math functions that can be derived from the intrinsic math functions:
Function | Derived equivalents |
---|---|
Secant | Sec([X]) = 1 / Cos([X]) |
Cosecant | Cosec([X]) = 1 / Sin([X]) |
Cotangent | Cotan([X]) = 1 / Tan([X]) |
Inverse Sine | Arcsin([X]) = Atn([X] / Sqr(-[X] * [X] + 1)) |
Inverse Cosine | Arccos([X]) = Atn(-[X] / Sqr(-[X] * [X] + 1)) + 2 * Atn(1) |
Inverse Secant | Arcsec([X]) = Atn([X] / Sqr([X] * [X] - 1)) + Sgn(([X]) - 1) * (2 * Atn(1)) |
Inverse Cosecant | Arccosec([X]) = Atn([X] / Sqr([X] * [X] - 1)) + (Sgn([X]) - 1) * (2 * Atn(1)) |
Inverse Cotangent | Arccotan([X]) = Atn([X]) + 2 * Atn(1) |
Hyperbolic Sine | HSin([X]) = (Exp([X]) - Exp(-[X])) / 2 |
Hyperbolic Cosine | HCos([X]) = (Exp([X]) + Exp(-[X])) / 2 |
Hyperbolic Tangent | HTan([X]) = (Exp([X]) - Exp(-[X])) / (Exp([X]) + Exp(-[X])) |
Hyperbolic Secant | HSec([X]) = 2 / (Exp([X]) + Exp(-[X])) |
Hyperbolic Cosecant | HCosec([X]) = 2 / (Exp([X]) - Exp(-[X])) |
Hyperbolic Cotangent | HCotan([X]) = (Exp([X]) + Exp(-[X])) / (Exp([X]) - Exp(-[X])) |
Inverse Hyperbolic Sine | HArcsin([X]) = Log([X] + Sqr([X] * [X] + 1)) |
Inverse Hyperbolic Cosine | HArccos([X]) = Log([X] + Sqr([X] * [X] - 1)) |
Inverse Hyperbolic Tangent | HArctan([X]) = Log((1 + [X]) / (1 - [X])) / 2 |
Inverse Hyperbolic Secant | HArcsec([X]) = Log((Sqr(-[X] * [X] + 1) + 1) / [X]) |
Inverse Hyperbolic Cosecant | HArccosec([X]) = Log((Sgn([X]) * Sqr([X] * [X] + 1) + 1) / [X]) |
Inverse Hyperbolic Cotangent | HArccotan([X]) = Log(([X] + 1) / ([X] - 1)) / 2 |
Logarithm to base N | LogN([X]) = Log([X]) / Log(N) |