The Baseline table (BASE) provides information used to align glyphs of different scripts and sizes in a line of text, whether the glyphs are in the same font or in different fonts. To improve text layout, the Baseline table also provides minimum (min) and maximum (max) glyph extent values for each script, language system, or feature in a font.
Lines of text composed with glyphs of different scripts and point sizes need adjustment to correct interline spacing and alignment. For example, glyphs designed to be the same point size often differ in height and depth from one font to another (see figure 5a). This variation can produce interline spacing that looks too large or too small, and diacritical marks, math symbols, subscripts, and superscripts may be clipped.
In addition, different baselines can cause text lines to waver visually as glyphs from different scripts are placed next to one another. For example, ideographic scripts position all glyphs on a low baseline. With Latin scripts, however, the baseline is higher, and some glyphs descend below it. Finally, several Indic scripts use a high "hanging baseline" to align the tops of the glyphs.
To solve these composition problems, the BASE table recommends baseline positions and min/max extents for each script (see figure 5b). Script min/max extents can be modified for particular language systems or features.
|
The BASE table uses a model that assumes one script at one size is the "dominant run" during text processing-that is, all other baselines are defined in relation to this the dominant run.
For example, Latin glyphs and the ideographic Kanji glyphs have different baselines. If a Latin script of a particular size is specified as the dominant run, then all Latin glyphs of all sizes will be aligned on the roman baseline, and all Kanji glyphs will be aligned on the lower ideographic baseline defined for use with Latin text. As a result, all glyphs will look aligned within each line of text.
The BASE table supplies recommended baseline positions; a client can specify others. For instance, the client may want to assign baseline positions different from those in the font.
|
The BASE table gives clients the option of using script, language system, or feature-specific extent values to improve composition (see figure 5c). For example, suppose a font contains glyphs in Latin and Arabic scripts, and the min/max extents defined for the Arabic script are larger than the Latin extents. The font also supports Urdu, a language system that includes specific variants of the Arabic glyphs, and some Urdu variants require larger min/max extents than the default Arabic extents. To accommodate the Urdu glyphs, the BASE table can define language-specific min/max extent values that will override the default Arabic extents-but only when rendering Urdu glyphs.
The BASE table also can define feature-specific min/max values that apply only when a particular feature is enabled. Suppose that the font described earlier also supports the Farsi language system, which has one feature that requires a minor alteration of the Arabic script extents to display properly. The BASE table can specify these extent values and apply them only when that feature is enabled in the Farsi language.
The BASE table begins with offsets to Axis tables that describe layout data for the horizontal and vertical layout directions of text. A font can provide layout data for both text directions or for only one text direction:
figure 5d shows how the BASE table is organized.
|
The HorizAxis and VertAxis tables organize layout information by script in BaseScriptList tables. A BaseScriptList enumerates all scripts in the font that are written in a particular direction (horizontal or vertical).
For example, consider a Japanese font that contains Kanji, Kana, and Latin scripts. Because all three scripts are rendered horizontally, all three are defined in the BaseScriptList of the HorizAxis table. Kanji and Kana also are rendered vertically, so those two scripts are defined in the BaseScriptList of the VertAxis table, too.
Each Axis table also references a BaseTagList, which identifies all the baselines for all scripts written in the same direction (horizontal or vertical). The BaseTagList may also include baseline tags for scripts supported in other fonts.
Each script in a BaseScriptList is represented by a BaseScriptRecord. This record references a BaseScript table, which contains layout data for the script. In turn, the BaseScript table references a BaseValues table, which contains baseline information and several MinMax tables that define min/max extent values.
The BaseValues table specifies the coordinate values for all baselines in the BaseTagList. In addition, it identifies one of these baselines as the default baseline for the script. As glyphs in a script are scaled, they grow or shrink from the script's default baseline position. Each baseline can have unique coordinates. This contrasts with TrueType 1.0, which implies a single, fixed baseline for all scripts in a font. With the OpenType Layout tables, each script can be aligned independently, although more than one script may use the same baseline values.
Baseline coordinates for scripts in the same font must be specified in relation to each other for correct alignment of the glyphs. Consider the font, discussed earlier, containing both Latin and Kanji glyphs. If the BaseTagList of the HorizAxis table specifies two baselines, the roman and the ideographic, then the layout data for both the Latin and Kanji scripts will specify coordinate positions for both baselines:
The BaseScript table can define minimum and maximum extent values for each script, language system, or feature. (These values are distinct from the min/max extent values recorded for the font as a whole in the head, hhea, vhea, and OS/2 tables.) These extent values appear in three tables:
Note: Language-system or feature-specific extent values may be essential to define some fonts. However, the default min/max extent values specified for each script should usually be enough to support high-quality text layout.
The actual baseline and min/max extent values used by the BASE table reside in BaseCoord tables. Three formats are defined for BaseCoord table data. All formats define single X or Y coordinate values in design units, but two formats support fine adjustments to these values based on a contour point or a Device table.
The rest of this chapter describes all the tables defined within the BASE table. Sample tables and lists that illustrate typical data for a font are supplied at the end of the chapter.
The BASE table begins with a header that consists of a version number for the table (Version), initially set to 1.0 (0x00010000), and offsets to horizontal and vertical Axis tables (HorizAxis and VertAxis).
Each Axis table stores all baseline information and min/max extents for one layout direction. The HorizAxis table contains Y values for horizontal text layout; the VertAxis table contains X values for vertical text layout.
A font may supply information for both layout directions. If a font has values for only one text direction, the Axis table offset value for the other direction will be set to NULL.
Example 1 at the end of this chapter shows a sample BASE Header.
BASE Header
Type | Name | Description |
---|---|---|
fixed32 | Version | Version of the BASE table-initially 0x00010000 |
Offset | HorizAxis | Offset to horizontal Axis table-from beginning of BASE table-may be NULL |
Offset | VertAxis | Offset to vertical Axis table-from beginning of BASE table-may be NULL |
An Axis table is used to render scripts either horizontally or vertically. It consists of offsets, measured from the beginning of the Axis table, to a BaseTagList and a BaseScriptList:
Example 1 at the end of this chapter shows an example of an Axis table.
Axis Table
Type | Name | Description |
---|---|---|
Offset | BaseTagList | Offset to BaseTagList table-from beginning of Axis table-may be NULL |
Offset | BaseScriptList | Offset to BaseScriptList table-from beginning of Axis table |
The BaseTagList table identifies the baselines for all scripts in the font that are rendered in the same text direction. Each baseline is identified with a 4-byte baseline tag. The BaseTagList can define any number of baselines, and it may include baseline tags for scripts supported in other fonts.
Each script in the BaseScriptList table must designate one of these BaseTagList baselines as its default, which the OpenType Layout Services use to align all glyphs in the script. Even though the BaseScriptList and the BaseTagList are defined independently of one another, the BaseTagList typically includes a tag for each different default baseline needed to render the scripts in the layout direction. If some scripts use the same default baseline, the BaseTagList needs to list the common baseline tag only once.
The BaseTagList table consists of an array of baseline identification tags (BaselineTag), listed alphabetically, and a count of the total number of baseline Tags in the array (BaseTagCount).
Example 1 at the end of this chapter shows a sample BaseTagList table.
BaseTagList table
Type | Name | Description |
---|---|---|
uint16 | BaseTagCount | Number of baseline identification tags in this text direction-may be zero (0) |
Tag | BaselineTag[BaseTagCount] | Array of 4-byte baseline identification tags-must be in alphabetical order |
The BaseScriptList table identifies all scripts in the font that are rendered in the same layout direction. If a script is not listed here, then the text-processing client will render the script using the layout information specified for the entire font.
For each script listed in the BaseScriptList table, a BaseScriptRecord must be defined that identifies the script and references its layout data. BaseScriptRecords are stored in the BaseScriptRecord array, ordered alphabetically by the BaseScriptTag in each record. The BaseScriptCount specifies the total number of BaseScriptRecords in the array.
Example 1 at the end of this chapter shows a sample BaseScriptList table.
BaseScriptList table
Type | Name | Description |
---|---|---|
uint16 | BaseScriptCount | Number of BaseScriptRecords defined |
struct | BaseScriptRecord[BaseScriptCount] | Array of BaseScriptRecords-in alphabetical order by BaseScriptTag |
A BaseScriptRecord contains a script identification tag (BaseScriptTag), which must be identical to the ScriptTag used to define the script in the ScriptList of a GSUB or GPOS table. Each record also must include an offset to a BaseScript table that defines the baseline and min/max extent data for the script.
Example 1 at the end of this chapter shows a sample BaseScriptRecord.
BaseScriptRecord
Type | Name | Description |
---|---|---|
Tag | BaseScriptTag | 4-byte script identification tag |
Offset | BaseScript | Offset to BaseScript table-from beginning of BaseScriptList |
A BaseScript table organizes and specifies the baseline data and min/max extent data for one script. Within a BaseScript table, the BaseValues table contains baseline information, and one or more MinMax tables contain min/max extent data.
The BaseValues table identifies the default baseline for the script and lists coordinate positions for each baseline named in the corresponding BaseTagList. Each script can assign a different position to each baseline, so each script can be aligned independently in relation to any other script. (For more details, see the BaseValues table description later in this chapter.)
The DefaultMinMax table defines the default min/max extent values for the script. (For details, see the MinMax table description below.) If a language system or feature defined in the font has no effect on the script's default min/max extents, the OpenType Layout Services will use the default script values.
Sometimes language-specific overrides for min/max extents are needed to properly render the glyphs in a specific language system. For example, a glyph substitution required in a language system may result in a glyph whose extents exceed the script's default min/max extents. Each language system that specifies min/max extent values must define a BaseLangSysRecord. The record should identify the language system (BaseLangSysTag) and contain an offset to a MinMax table of language-specific extent coordinates.
Feature-specific overrides for min/max extents also may be needed to accommodate the effects of glyph actions used to implement a specific feature. For example, superscript or subscript features may require changes to the default script or language system extents. Feature-specific extent values not limited to a specific language system may be specified in the DefaultMinMax table. However, extent values used for a specific language system require a BaseLangSysRecord and a MinMax table. In addition to specifying coordinate data, the MinMax table must contain offsets to FeatMinMaxRecords that define the feature-specific min/max data.
A BaseScript table has four components:
Example 2 at the end of this chapter shows a sample BaseScript table.
BaseScript Table
Type | Name | Description |
---|---|---|
Offset | BaseValues | Offset to BaseValues table-from beginning of BaseScript table-may be NULL |
Offset | DefaultMinMax | Offset to MinMax table- from beginning of BaseScript table-may be NULL |
uint16 | BaseLangSysCount | Number of BaseLangSysRecords defined-may be zero (0) |
struct | BaseLangSysRecord [BaseLangSysCount] | Array of BaseLangSysRecords-in alphabetical order by BaseLangSysTag |
A BaseLangSysRecord defines min/max extents for a language system or a language-specific feature. Each record contains an identification tag for the language system (BaseLangSysTag) and an offset to a MinMax table (MinMax) that defines extent coordinate values for the language system and references feature-specific extent data.
Example 2 at the end of this chapter shows a BaseLangSysRecord.
BaseLangSysRecord
Type | Name | Description |
---|---|---|
Tag | BaseLangSysTag | 4-byte language system identification tag |
Offset | MinMax | Offset to MinMax table-from beginning of BaseScript table |
A BaseValues table lists the coordinate positions of all baselines named in the BaselineTag array of the corresponding BaseTagList and identifies a default baseline for a script.
Note: When the offset to the corresponding BaseTagList is NULL, a BaseValues table is not needed. However, if the offset is not NULL, then each script must specify coordinate positions for all baselines named in the BaseTagList.
The default baseline, one per script, is the baseline used to lay out and align the glyphs in the script. The DefaultIndex in the BaseValues table identifies the default baseline with a value that equals the array index position of the corresponding tag in the BaselineTag array.
For example, the Han and Latin scripts use different baselines to align text. If a font supports both of these scripts, the BaselineTag array in the BaseTagList of the HorizAxis table will contain two tags, listed alphabetically: "ideo" in BaselineTag[0] for the Han ideographic baseline, and "romn" in BaselineTag[1] for the Latin baseline. The BaseValues table for the Latin script will specify the roman baseline as the default, so the DefaultIndex in the BaseValues table for Latin will be "1" to indicate the roman baseline tag. In the BaseValues table for the Han script, the DefaultIndex will be "0" to indicate the ideographic baseline tag.
Two or more scripts may share a default baseline. For instance, if the font described above also supports the Cyrillic script, the BaselineTag array does not need a baseline tag for Cyrillic because Cyrillic and Latin share the same baseline. The DefaultIndex defined in the BaseValues table for the Cyrillic script will specify "1" to indicate the roman baseline tag, listed in the second position in the BaselineTag array.
In addition to identifying the DefaultIndex, the BaseValues table contains an offset to an array of BaseCoord tables (BaseCoord) that list the coordinate positions for all baselines, including the default baseline, named in the associated BaselineTag array. One BaseCoord table is defined for each baseline. The BaseCoordCount defines the total number of BaseCoord tables, which must equal the number of baseline tags listed in BaseTagCount in the BaseTagList.
Each baseline coordinate is defined as a single X or Y value in design units measured from the zero position on the relevant X or Y axis. For example, a BaseCoord table defined in the HorizAxis table will contain a Y value because horizontal baselines are positioned vertically. BaseCoord values may be negative. Each script may assign a different coordinate to each baseline.
Offsets to each BaseCoord table are stored in a BaseCoord array within the BaseValues table. The order of the stored offsets corresponds to the order of the tags listed in the BaselineTag array of the BaseTagList. In other words, the first position in the BaseCoord array will define the offset to the BaseCoord table for the first baseline named in the BaselineTag array, the second position will define the offset to the BaseCoord table for the second baseline named in the BaselineTag array, and so on.
Example 3 at the end of the chapter has two parts, one that shows a BaseValues table and one that shows a chart with different baseline positions defined for several scripts.
BaseValues table
Type | Name | Description |
---|---|---|
uint16 | DefaultIndex | Index number of default baseline for this script-equals index position of baseline tag in BaselineArray of the BaseTagList |
uint16 | BaseCoordCount | Number of BaseCoord tables defined-should equal BaseTagCount in the BaseTagList |
Offset | BaseCoord[BaseCoordCount] | Array of offsets to BaseCoord-from beginning of BaseValues table-order matches BaselineTag array in the BaseTagList |
The MinMax table specifies extents for scripts and language systems. It also contains an array of FeatMinMaxRecords used to define feature-specific extents.
Both the MinMax table and the FeatMinMaxRecord define offsets to two BaseCoord tables: one that defines the mimimum extent value (MinCoord), and one that defines the maximum extent value (MaxCoord). Each extent value is a single X or Y value, depending upon the text direction, and is specified in design units. Coordinate values may be negative.
Different tables define the min/max extent values for scripts, language systems, and features:
In a FeatMinMaxRecord, the MinCoord and MaxCoord tables specify the minimum and maximum coordinate values for the feature, and a FeatureTableTag defines a 4-byte feature identification tag. The FeatureTableTag must match the tag used to identify the feature in the FeatureList of the GSUB or GPOS table.
Each feature that exceeds the default min/max values requires a FeatMinMaxRecord. All FeatMinMaxRecords are listed alphabetically by FeatureTableTag in an array (FeatMinMaxRecord) within the MinMax table. FeatMinMaxCount defines the total number of FeatMinMaxRecords.
Text-processing clients should use the following procedure to access the script, language system, and feature-specific extent data:
Example 4 at the end of this chapter has two parts. One shows MinMax tables and a FeatMinMaxRecord for different script, language system, and feature extents. The second part shows how to define these tables when a language system needs feature-specific extent values for an obscure feature, but otherwise the language system and script extent values match.
MinMax table
Type | Name | Description |
---|---|---|
Offset | MinCoord | Offset to BaseCoord table-defines minimum extent value-from the beginning of MinMax table-may be NULL |
Offset | MaxCoord | Offset to BaseCoord table-defines maximum extent value-from the beginning of MinMax table-may be NULL |
uint16 | FeatMinMaxCount | Number of FeatMinMaxRecords-may be zero (0) |
struct | FeatMinMaxRecord [FeatMinMaxCount] | Array of FeatMinMaxRecords-in alphabetical order, by FeatureTableTag |
Type | Name | Description |
---|---|---|
Tag | FeatureTableTag | 4-byte feature identification tag-must match FeatureTag in FeatureList |
Offset | MinCoord | Offset to BaseCoord table-defines minimum extent value-from beginning of MinMax table-may be NULL |
Offset | MaxCoord | Offset to BaseCoord table-defines maximum extent value-from beginning of MinMax table-may be NULL |
Within the BASE table, a BaseCoord table defines baseline and min/max extent values. Each BaseCoord table defines one X or Y value:
All values are defined in design units, which typically are scaled and rounded to the nearest integer when scaling the glyphs. Values may be negative.
Three formats available for BaseCoord table data define single X or Y coordinate values in design units. Two of the formats also support fine adjustments to the X or Y values based on a contour point or a Device table.
The first BaseCoord format (BaseCoordFormat1) consists of a format identifier, followed by a single design unit coordinate that specifies the BaseCoord value. This format has the benefits of small size and simplicity, but the BaseCoord value cannot be hinted for fine adjustments at different sizes or device resolutions.
Example 5 at the end of the chapter shows a sample of a BaseCoordFormat1 table.
BaseCoordFormat1 table: Design units only
Type | Name | Description |
---|---|---|
uint16 | BaseCoordFormat | Format identifier-format = 1 |
int16 | Coordinate | X or Y value, in design units |
The second BaseCoord format (BaseCoordFormat2) specifies the BaseCoord value in design units, but also supplies a glyph index and a contour point for reference. During font hinting, the contour point on the glyph outline may move. The point's final position after hinting provides the final value for rendering a given font size.
Note: Glyph positioning operations defined in the GPOS table do not affect the point's final position.
Example 6 shows a sample of a BaseCoordFormat2 table.
BaseCoordFormat2 table: Design units plus contour point
Type | Name | Description |
---|---|---|
uint16 | BaseCoordFormat | Format identifier-format = 2 |
int16 | Coordinate | X or Y value, in design units |
GlyphID | ReferenceGlyph | GlyphID of control glyph |
uint16 | BaseCoordPoint | Index of contour point on the ReferenceGlyph |
The third BaseCoord format (BaseCoordFormat3) also specifies the BaseCoord value in design units, but it uses a Device table rather than a contour point to adjust the value. This format offers the advantage of fine-tuning the BaseCoord value for any font size and device resolution. (For more information about Device tables, see the chapter, Common Table Formats.)
Example 7 at the end of this chapter shows a sample of a BaseCoordFormat3 table.
BaseCoordFormat3 table: Design units plus Device table
Type | Name | Description |
---|---|---|
uint16 | BaseCoordFormat | Format identifier-format = 3 |
int16 | Coordinate | X or Y value, in design units |
Offset | DeviceTable | Offset to Device table for X or Y value |
The rest of this chapter describes and illustrates examples of all the BASE tables. All the examples reflect unique parameters described below, but the samples provide a useful reference for building tables specific to other situations.
Most of the examples have three columns showing hex data, source, and comments.
Example 1 describes a sample font that contains four scripts: Cyrillic, Devanagari, Han, and Latin. All four scripts are rendered horizontally; only one script, Han, is rendered vertically. As a result, the BASE header gives offsets to two Axis tables: HorizAxis and VertAxis. Example 1 only shows data defined in the HorizAxis table.
In the HorizAxis table, the BaseScriptList enumerates all four scripts. The BaseTagList table names three horizontal baselines for rendering these scripts: hanging, ideographic, and roman. The hanging baseline is the default for Devanagari, the ideographic baseline is the default for Han, and the roman baseline is the default for both Latin and Cyrillic.
The VertAxis table (not shown) would be defined similarly: its BaseScriptList would enumerate one script, Han, and its BaseTagList would specify the vertically centered baseline for rendering the Han script.
Example 1
Hex Data | Source | Comments |
---|---|---|
BASEHeader TheBASEHeader | BASE table header definition | |
00010000 | 0x00010000 | Version |
0008 | HorizontalAxisTable | Offset to HorizAxis table |
010C | VerticalAxisTable | Offset to VertAxis table |
Axis HorizontalAxisTable | Axis table definition | |
0004 | HorizBaseTagList | Offset to BaseTagList table |
0012 | HorizBaseScriptList | Offset to BaseScriptList table |
BaseTagList HorizBaseTagList | BaseTagList table definition | |
0003 | 3 | BaseTagCount |
68616E67 | "hang" | BaselineTag[0], in alphabetical order |
6964656F | "ideo" | BaselineTag[1] |
726F6D6E | "romn" | BaselineTag[2] |
BaseScriptList HorizBaseScriptList | BaseScriptList table definition | |
0004 | 4 | BaseScriptCount BaseScriptRecord[0], in alphabetical order |
6379726C | "cyrl" | BaseScriptTag for Cyrillic script |
001A | HorizCyrillicBaseScriptTable | Offset to BaseScript table for Cyrillic script BaseScriptRecord[1] |
6465766E | "devn" | BaseScriptTag for Devanagari script |
0060 | HorizDevanagariBaseScriptTable | Offset to BaseScript table for Devanagari script BaseScriptRecord[2] |
68616E69 | "hani" | BaseScriptTag for Han script |
008A | HorizHanBaseScriptTable | Offset to BaseScript table for Han script BaseScriptRecord[3] |
6C61746E | "latn" | BaseScriptTag for Latin script |
00B4 | HorizLatinBaseScriptTable | Offset to BaseScript table for Latin script |
Example 2 shows the BaseScript table and BaseLangSysRecord for the Cyrillic script, one of the four scripts included in the sample font described in Example 1. The BaseScript table specifies offsets to tables that contain the baseline and min/max extent data for Cyrillic. (The BaseScript tables for the other three scripts in the font would be defined similarly.) Again, the table specifies only the horizontal text-layout information.
The HorizCyrillicBaseValues table contains the baseline information for the script, and the HorizCyrillicDefaultMinMax table contains the default script extents. In addition, a BaseLangSysRecord defines min/max extent data for the Russian language system.
Example 2
Hex Data | Source | Comments |
---|---|---|
BaseScript HorizCyrillicBaseScriptTable | BaseScript table definition for Cyrillic script | |
000C | HorizCyrillicBaseValuesTable | Offset to BaseValues table |
0022 | HorizCyrillicDefault MinMaxTable | Offset to DefaultMinMax table default script extents |
0001 | 1 | BaseLangSysCount, feature-specific extents BaseLangSysRecord[0] in alphabetical order |
52555320 | "RUS " | BaseLangSysTag, Russian language system |
0030 | HorizRussianMinMaxTable | Offset to MinMax table feature-specific extents |
Example 3 extends the BASE table definition for the Cyrillic script described in Examples 1 and 2. It contains two parts:
The examples show only horizontal text-layout data, and the font uses 2,048 design units/em.
The BaseValues table of Example 3A identifies the default baseline for Cyrillic and specifies coordinate positions for each baseline listed in the BaseTagList shown in Example 1:
Hex Data | Source | Comments |
---|---|---|
BaseValues HorizCyrillicBaseValuesTable | BaseValues table definition for Cyrillic script | |
0002 | 2 | DefaultIndex, roman baseline BaselineTag index |
0003 | 3 | BaseCoordCount, equals BaseTagCount |
000A | HorizHangingBaseCoordForCyrl | Offset to BaseCoord[0] table hanging baseline coordinate, order matches order of BaselineTag array in BaseTagList |
000E | HorizideographicBaseCoordForCyrl | Offset to BaseCoord[1] table ideographic baseline coordinate |
0012 | HorizromanBaseCoordForCyrl | Offset to BaseCoord[2] table roman baseline coordinate |
BaseCoordFormat1 HorizHangingBaseCoordForCyrl | BaseCoord table definition | |
0001 | 1 | BaseCoordFormat design units only |
05DC | 1500 | Coordinate Y value, in design units |
BaseCoordFormat1 HorizideographicBaseCoordForCyrl | BaseCoord table definition | |
0001 | 1 | BaseCoordFormat design units only |
FEE0 | -288 | Coordinate Y value, in design units |
BaseCoordFormat1 HorizromanBaseCoordinateForCyrl | BaseCoord table definition | |
0001 | 1 | BaseCoordFormat, design units only |
0000 | 0 | Coordinate, Y value, in design units |
Example 3B shows two tables that contain baseline values for each of the four scripts in the sample font described in Example 1:
Either method of assigning baseline values can be used in the BASE table.
Example 3B: Identical baseline values
Baseline type | Han | Latin | Cyrillic | Devanagari |
---|---|---|---|---|
hanging | 1500 | 1500 | 1500 | 1500 |
roman | 0 | 0 | 0 | 0 |
ideographic | -288 | -288 | -288 | -288 |
Baseline type | Han | Latin | Cyrillic | Devanagari |
---|---|---|---|---|
hanging | 1788 | 1500 | 1500 | 0 |
roman | 288 | 0 | 0 | -1500 |
ideographic | 0 | -288 | -288 | -1788 |
Example 4 shows MinMax table and FeatMinMaxRecord definitions for the same Cyrillic script described in the previous example. It contains two parts:
The examples show only horizontal text-layout data, and the font uses 2,048 design units/em.
Example 4A shows two MinMax tables and a FeatMinMaxRecord for the Cyrillic script, along with sample BaseCoord tables. Only the MinCoord extent data is included.
The DefaultMinMax table defines the default minimum and maximum extents for the Cyrillic script. Another MinMax table defines language-specific min/max extents for the Russian language system to accommodate the height and width of certain glyphs used in Russian. Also, a FeatMinMaxRecord defines min/max extents for a single feature in the Russian language system that substitutes a tall integral math symbol when required.
Example 4A
Hex Data | Source | Comments |
---|---|---|
MinMax HorizCyrillicDefault MinMaxTable | DefaultMinMax table definition, Cyrillic script | |
0006 | HorizCyrillic MinCoordTable | MinCoord offset to BaseCoord table |
000A | HorizCyrillic MaxCoordTable | MaxCoord offset to BaseCoord table |
0000 | 0 | FeatMinMaxCount no default feature extents FeatMinMaxRecord[], no FeatMinMaxRecords |
BaseCoordFormat1 HorizCyrillic MinCoordTable | BaseCoord table definition, default Cyrillic Min extent coordinate | |
0001 | 1 | BaseCoordFormat, design units only |
FF38 | -200 | Coordinate Y value, in design units |
BaseCoordFormat1 HorizCyrillic MaxCoordTable | BaseCoord table definition default Cyrillic Max extent coordinate | |
0001 | 1 | BaseCoordFormat, design units only |
0674 | 1652 | Coordinate Y value, in design units |
MinMax HorizRussianMinMaxTable | MinMax table definition Russian language extents | |
000E | HorizRussianLangSys MinCoordTable | MinCoord Offset to BaseCoord table |
0012 | HorizRussianLangSys MaxCoordTable | MaxCoord Offset to BaseCoord table |
0001 | 1 | FeatMinMaxCount FeatMinMaxRecord[0] in alphabetical order |
696E7467 | "intg" | FeatureTableTag integral math symbol Feature must be same as Tag in FeatureList |
0016 | HorizRussianFeature MinCoordTable | MinCoord Offset to BaseCoord table |
001A | HorizRussianFeature MaxCoordTable | MaxCoord Offset to BaseCoord table |
BaseCoordFormat1 HorizRussianLangSys MinCoordTable | BaseCoord table definition Russian language min extent coordinate | |
0001 | 1 | BaseCoordFormat design units only |
FF08 | -248 | Coordinate Y value, in design units, increased Min extent beyond default Cyrillic min extent |
BaseCoordFormat1 HorizRussianLangSys MaxCoordTable | BaseCoord table definition Russian language feature Max extent coordinate | |
0001 | 1 | BaseCoordFormat design units only |
06A4 | 1700 | Coordinate Y value, in design units increased max extent beyond default Cyrillic max extent |
BaseCoordFormat1 HorizRussianFeature MinCoordTable | BaseCoord table definition Russian language Min extent coordinate | |
0001 | 1 | BaseCoordFormat Design Units Only |
FED8 | -296 | Coordinate Y value, in design units, increased Min extent beyond default Cyrillic script and Russian language min extents |
BaseCoordFormat1 HorizRussianFeature MaxCoordTable | BaseCoord table definition Russian language feature Max extent coordinate | |
0001 | 1 | BaseCoordFormat design units only |
06D8 | 1752 | Coordinate Y value, in design units increased Max extent beyond default Cyrillic script and Russian language max extents |
A particular language system does not need to define min/max extent coordinates if its extents match the default extents defined for the script. However, an obscure or infrequently used feature within the language system may require feature-specific extent values for proper rendering.
Example 4B shows the MinMax and FeatMinMaxRecord table definitions for this situation. The example also includes a BaseScript table, but not a BaseValues tables since it is not relevant in this example. The example shows horizontal text layout extents for the Cyrillic script and feature-specific extents for one feature in the Russian language system. Much of the data is repeated from Example 4A and modified here for comparison.
The BaseScript table includes a DefaultMinMax table for the Cyrillic script and a BaseLangSysRecord that defines a BaseLangSysTag and an offset to a MinMax table for the Russian language. The MinMax table includes a FeatMinMaxRecord and specifies a FeatMinMaxCount, but both the MinCoord and MaxCoord offsets in the MinMax table are set to NULL since no language-specific extent values are defined for Russian. The FeatMinMaxRecord defines the min/max coordinates for the Russian feature and specifies the correct FeatureTableTag.
Example 4B
Hex Data | Source | Comments |
---|---|---|
BaseScript HorizCyrillicBaseScriptTable | BaseScript table definition Cyrillic script | |
0000 | NULL | offset to BaseValues table |
000C | HorizCyrillicDefault MinMaxTable | offset to DefaultMinMax table for default script extents |
0001 | 1 | BaseLangSysCount BaseLangSysRecord[0] for Russian feature-specific-extents |
52555320 | "RUS " | BaseLangSysTag = Russian |
001A | HorizRussian MinMaxTable | offset to MinMax table for feature-specific extents |
MinMax HorizCyrillicDefault MinMaxTable | DefaultMinMax table definition Cyrillic script | |
0006 | HorizCyrillic MinCoordTable | MinCoord offset to BaseCoord table |
000A | HorizCyrillic MaxCoordTable | MaxCoord offset to BaseCoord table |
0000 | 0 | FeatMinMaxCount, no default feature extents FeatMinMaxRecord[], no FeatMinMaxRecords |
BaseCoordFormat1 HorizCyrillic MinCoordTable | BaseCoord table definition default Cyrillic Min extent coordinate | |
0001 | 1 | BaseCoordFormat design units only |
FF38 | -200 | Coordinate Y value, in design units |
BaseCoordFormat1 HorizCyrillic MaxCoordTable | BaseCoord table definition default Cyrillic Min extent coordinate | |
0001 | 1 | BaseCoordFormat design units only |
0674 | 1652 | Coordinate Y value, in design units |
MinMax HorizRussian MinMaxTable | MinMax table definition for Russian feature no extent differences for Russian language itself | |
0000 | NULL | offset to Min BaseCoord table not defined, matches default |
0000 | NULL | offset to Max BaseCoord table not defined, matches default |
0001 | 1 | FeatMinMaxCount, FeatMinMaxRecord[0] in alphabetical order |
696E7467 | "intg" | FeatureTableTag integral math sign Feature must be same as Tag in FeatureList |
000E | HorizRussianFeature MinCoordTable | MinCoord offset to BaseCoord table |
0012 | HorizRussianFeature MaxCoordTable | MaxCoord offset to BaseCoord table |
BaseCoordFormat1 HorizRussianFeature MinCoordTable | BaseCoord table definition Russian Feature Min extent coordinate | |
0001 | 1 | BaseCoordFormat, design units only |
FED8 | -296 | Coordinate Y value, in design units increased Min extent beyond default Cyrillic Min extent |
BaseCoordFormat1 HorizRussianFeature MaxCoordTable | BaseCoord table definition, Russian feature Max extent coordinate | |
0001 | 1 | BaseCoordFormat design units only |
06D8 | 1752 | Coordinate Y value, in design units, increased Max extent beyond default Cyrillic Max extent |
Example 5 illustrates BaseCoordFormat1, which specifies single coordinate values in design units only. The font uses 2,048 design units/em. The example defines the default minimum extent coordinate for a math script.
Example 5
Hex Data | Source | Comments |
---|---|---|
BaseCoordFormat1 HorizMathMinCoordTable | Definition of BaseCoord table for Math Min coordinate | |
0001 | 1 | BaseCoordFormat, design units only |
FEE8 | -280 | Coordinate Y value, in design units |
Example 6 illustrates the BaseCoord Format 2. Like Example 5, it specifies the minimum extent coordinate for a math script. With this format, the coordinate value depends on the final position of a specific contour point on one glyph, the integral math symbol, after hinting. Again, the value is in design units (2,048 units/em).
Example 6
Hex Data | Source | Comments |
---|---|---|
BaseCoordFormat2 HorizMathMinCoordTable | BaseCoord table definition for Math Min coordinate | |
0002 | 2 | BaseCoordFormat design units plus contour point |
FEE8 | -280 | Coordinate Y value, in design units |
0128 | IntegralSignGlyphID | ReferenceGlyph math integral sign |
0043 | 67 | BaseCoordPoint glyph contour point index |
Example 7 illustrates the BaseCoord Format 3. Like Examples 5 and 6, it specifies the minimum extent coordinate for a math script in design units (2,048 units/em). This format, however, uses a Device table to modify the coordinate value for the point size and resolution of the output font. Here, the Device table defines pixel adjustments for font sizes from 11 ppem to 15 ppem. The adjustments add one pixel at each size.
Example 7
Hex Data | Source | Comments |
---|---|---|
BaseCoordFormat3 HorizMathMinCoordTable | BaseCoord table definition for Math Min coordinate | |
0003 | 3 | BaseCoordFormat design units plus device table |
-280 | Coordinate Y value, in design units | |
000C | HorizMathMin CoordDeviceTable | Offset to Device table |
DeviceTableFormat1 HorizMathMin CoordDeviceTable | Device table definition for MinCoord | |
000B | 11 | StartSize -11 ppem |
000F | 15 | EndSize -15 ppem |
0001 | 1 | DeltaFormat signed 2 bit value, 8 values per uint16 |
1 | Increase 11ppem by 1 pixel | |
1 | Increase 12ppem by 1 pixel | |
1 | Increase 13ppem by 1 pixel | |
1 | Increase 14ppem by 1 pixel | |
5540 | 1 | Increase 15ppem by 1 pixel |