15.25.1 Simple Assignment Operator =

A compile-time error occurs if the type of the right-hand operand cannot be converted to the type of the variable by assignment conversion (§5.2).

At run time, the expression is evaluated in one of two ways. If the left-hand operand expression is not an array access expression, then three steps are required:

If the left-hand operand expression is an array access expression (§15.12), then many steps are required:

The rules for assignment to an array component are illustrated by the following example program:


class ArrayReferenceThrow extends RuntimeException { }

class IndexThrow extends RuntimeException { }

class RightHandSideThrow extends RuntimeException { }


class IllustrateSimpleArrayAssignment {

static Object[] objects = { new Object(), new Object() };

static Thread[] threads = { new Thread(), new Thread() };
static Object[] arrayThrow() { throw new ArrayReferenceThrow(); }

static int indexThrow() { throw new IndexThrow(); }
static Thread rightThrow() { throw new RightHandSideThrow(); }
static String name(Object q) { String sq = q.getClass().getName(); int k = sq.lastIndexOf('.'); return (k < 0) ? sq : sq.substring(k+1); }


	static void testFour(Object[] x, int j, Object y) {
		String sx = x == null ? "null" : name(x[0]) + "s";
		String sy = name(y);
		System.out.println();
		try {
			System.out.print(sx + "[throw]=throw => ");
			x[indexThrow()] = rightThrow();
			System.out.println("Okay!");
		} catch (Throwable e) { System.out.println(name(e)); }
		try {
			System.out.print(sx + "[throw]=" + sy + " => ");
			x[indexThrow()] = y;
			System.out.println("Okay!");
		} catch (Throwable e) { System.out.println(name(e)); }
		try {
			System.out.print(sx + "[" + j + "]=throw => ");
			x[j] = rightThrow();
			System.out.println("Okay!");
		} catch (Throwable e) { System.out.println(name(e)); }
		try {
			System.out.print(sx + "[" + j + "]=" + sy + " => ");
			x[j] = y;
			System.out.println("Okay!");
		} catch (Throwable e) { System.out.println(name(e)); }
	}

public static void main(String[] args) { try { System.out.print("throw[throw]=throw => "); arrayThrow()[indexThrow()] = rightThrow(); System.out.println("Okay!"); } catch (Throwable e) { System.out.println(name(e)); } try { System.out.print("throw[throw]=Thread => "); arrayThrow()[indexThrow()] = new Thread(); System.out.println("Okay!"); } catch (Throwable e) { System.out.println(name(e)); } try { System.out.print("throw[1]=throw => "); arrayThrow()[1] = rightThrow(); System.out.println("Okay!"); } catch (Throwable e) { System.out.println(name(e)); } try { System.out.print("throw[1]=Thread => "); arrayThrow()[1] = new Thread(); System.out.println("Okay!"); } catch (Throwable e) { System.out.println(name(e)); } testFour(null, 1, new StringBuffer()); testFour(null, 1, new StringBuffer()); testFour(null, 9, new Thread()); testFour(null, 9, new Thread()); testFour(objects, 1, new StringBuffer()); testFour(objects, 1, new Thread()); testFour(objects, 9, new StringBuffer()); testFour(objects, 9, new Thread()); testFour(threads, 1, new StringBuffer()); testFour(threads, 1, new Thread()); testFour(threads, 9, new StringBuffer()); testFour(threads, 9, new Thread()); }
}

This program prints:


throw[throw]=throw => ArrayReferenceThrow
throw[throw]=Thread => ArrayReferenceThrow
throw[1]=throw => ArrayReferenceThrow
throw[1]=Thread => ArrayReferenceThrow

null[throw]=throw => IndexThrow null[throw]=StringBuffer => IndexThrow null[1]=throw => RightHandSideThrow null[1]=StringBuffer => NullPointerException
null[throw]=throw => IndexThrow null[throw]=StringBuffer => IndexThrow null[1]=throw => RightHandSideThrow null[1]=StringBuffer => NullPointerException
null[throw]=throw => IndexThrow null[throw]=Thread => IndexThrow null[9]=throw => RightHandSideThrow null[9]=Thread => NullPointerException
null[throw]=throw => IndexThrow null[throw]=Thread => IndexThrow null[9]=throw => RightHandSideThrow null[9]=Thread => NullPointerException
Objects[throw]=throw => IndexThrow Objects[throw]=StringBuffer => IndexThrow Objects[1]=throw => RightHandSideThrow Objects[1]=StringBuffer => Okay!
Objects[throw]=throw => IndexThrow Objects[throw]=Thread => IndexThrow Objects[1]=throw => RightHandSideThrow Objects[1]=Thread => Okay!
Objects[throw]=throw => IndexThrow Objects[throw]=StringBuffer => IndexThrow Objects[9]=throw => RightHandSideThrow Objects[9]=StringBuffer => IndexOutOfBoundsException
Objects[throw]=throw => IndexThrow Objects[throw]=Thread => IndexThrow Objects[9]=throw => RightHandSideThrow Objects[9]=Thread => IndexOutOfBoundsException
Threads[throw]=throw => IndexThrow Threads[throw]=StringBuffer => IndexThrow Threads[1]=throw => RightHandSideThrow Threads[1]=StringBuffer => ArrayStoreException
Threads[throw]=throw => IndexThrow Threads[throw]=Thread => IndexThrow Threads[1]=throw => RightHandSideThrow Threads[1]=Thread => Okay!
Threads[throw]=throw => IndexThrow Threads[throw]=StringBuffer => IndexThrow Threads[9]=throw => RightHandSideThrow Threads[9]=StringBuffer => IndexOutOfBoundsException
Threads[throw]=throw => IndexThrow Threads[throw]=Thread => IndexThrow Threads[9]=throw => RightHandSideThrow Threads[9]=Thread => IndexOutOfBoundsException

The most interesting case of the lot is the one thirteenth from the end:

Threads[1]=StringBuffer => ArrayStoreException

which indicates that the attempt to store a reference to a StringBuffer into an array whose components are of type Thread throws an ArrayStoreException. The code is type-correct at compile time: the assignment has a left-hand side of type Object[] and a right-hand side of type Object. At run time, the first actual argument to method testFour is a reference to an instance of "array of Thread" and the third actual argument is a reference to an instance of class StringBuffer.